数字信号处理—课程设计

2024-08-22

数字信号处理—课程设计(精选8篇)

数字信号处理—课程设计 篇1

使用MATLAB(或其他开发工具)编程实现下述内容并写出课程设计报告。

一、课程设计参考题目与设计内容(也可自行选题)

设计一基于DFT的信号频谱分析 主要要求:

1.对离散确定信号作如下谱分析:

(1)截取x(n)使x(n)成为有限长序列N,(长度N自己选)写程序计算出x(n)的N点DFT的 X(k),并画出时域序列图和相应的幅频图。

(2)将(1)中x(n)补零加长至M点,长度M自己选(,为了比较补零长短的影响,M可以取两次值,一次取较小的整数,一次取较大的整数),编写程序计算x(n)的M点DFT, 画出时域序列图和两次补零后相应的DFT幅频图。

2.研究信号频域的物理分辨率与信号频域的分析分辨率,明白两者的区别。(1)采集数据x(n)长度取N=16点,编写程序计算出x(n)的16点DFTX(k),并画出相应的幅频图。

(2)采集数据x(n)长度N=16点,补零加长至M点(长度M自己选),利用补零DFT计算 x(n)的频谱并画出相应的幅频图。

(3)采集数据x(n)长度取为M点(注意不是补零至M),编写程序计算出M点采集数据x(n)的的频谱并画出相应的幅频图。

3.对比设计内容1、2中各个仿真图,说明补零DFT的作用。补零DFT能否提高信号的频谱分辨率,说明提高频谱物理分辨率与频谱频域分辨率的措施各是什么?

设计二用窗函数法设计FIR数字低通滤波器 主要要求:

1.熟悉各种窗函数,在MATLAB命令窗下浏览各种窗函数,绘出(或打印)各种窗函数图。

2.编写计算理想低通滤波器单位抽样响应的m函数文件。

3根据指标(低通FIR滤波器的指标自行选择)要求选择窗函数的形状与长度N。4.编写m程序文件,通过调用设计内容2、3的m程序文件,计算所设计的实际低通FIR滤波器的单位抽样响应和频率响应,并打印在频率区间[O,π]上的幅频响应特性曲线,幅度用分贝表示。6.验证所设计的滤波器是否满足指标要求。

7.比较所选窗长N相同但窗形状不同对滤波器设计结果的影响以及选同一种窗函数但窗长N不同时对滤波器设计结果的影响,将结论写在报告中。

设计三 FIR数字滤波器设计 主要要求:

1.分别设计低通、带通、带阻和高通四种数字滤波器(FIR数字滤波器的指标自行选择);

2.说明设计目的,并分别阐述上述四类滤波器的设计原理、设计步骤,并给出所编写的相应的m程序;

3.仿真并打印上述四种滤波器的单位抽样响应和频率响应(频率区间[O,π]上的幅频响应特性曲线),并分析各个滤波器的特点,将结论写在报告中。

设计四

IIR数字滤波器设计 主要要求:

1.分别设计低通、带通、带阻和高通四种数字滤波器(FIR数字滤波器的指标自行选择);

2.说明设计目的,并分别阐述上述四类滤波器的设计原理、设计步骤,并给出所编写的相应的m程序;

3.仿真并打印上述四种滤波器的单位抽样响应和频率响应(频率区间[O,π]上的幅频响应特性曲线),并分析各个滤波器的特点,将结论写在报告中。

设计五语音信号去噪处理 主要要求:

1.在Windows环境下利用录音机或其他软件,录制一段自己的语音信号,时间控制在1秒左右,并对所录制的语音信号进行采样处理; 2.对语音信号做频谱分析,即画出采样后语音信号的时域波形和频域图;在语音信号中加入噪声信号(至少两种不同噪声信号),画出加噪语音信号的时域波形和频域图;

3.根据上步加噪语音信号频谱分析结果,确定数字滤波器的技术指标,设计合适的数字滤波器滤除噪声信号,并画出滤波器的频率响应曲线;

4.用所设计的数字滤波器对加噪语音信号进行滤波,并画出滤波后语音信号的时域波形和频域图,对滤波前后的语音信号进行对比,分析信号的变化; 5.利用MATLAB软件中的sound(x)函数实现对去噪语音信号的回放,验证设计效果。

二、课程设计撰写具体要求 1.阐述所选题目设计目的和要求;

2.阐述所选题目的设计思想(各种理论推导和计算)、系统功能结构及功能说明,并列出相应重要的MATLAB程序; 3.绘出设计中要求的各种曲线,并做出说明;

4.结合设计过程,归纳得出结论,并分析设计中遇到的问题及解决思路和方法; 5.写出设计体会; 6.参考文献;

7.程序源代码清单(放入课程设计报告册附录中)。

8.课程设计内容要求充实,叙述完整,语言流畅,格式规范,15~20页,A4纸打印。

9.课程设计报告封面要求:

10.设计报告要包含摘要关键词(3-5个)11.目录

一设计目的与要求………………………………………页码 二总体设计方案…………………………………………页码 三设计原理、结果与仿真分析…………………………页码 四结论……………………………………………………页码 五心得体会………………………………………………页码 参考文献…………………………………………………页码 附录………………………………………………………页码

特别注意:

数字信号处理—课程设计 篇2

数字信号处理(DSP)技术在近30年来得到飞速发展,它在语音、雷达、声纳、图像、通信、遥感遥测、航空航天等众多领域都获得极其广泛的应用。为适应这一发展对人才的需求,许多高校都开设了数字信号处理课程,并且已由过去的面向电子信息类专业逐渐扩展到面向电气工程、仪器仪表、机械制造及生物医学等更多的专业领域。数字信号处理是一门涉及众多学科又应用于众多领域的学科,它既有较为完整的理论体系,又具有实际的应用价值,因此要建设好数字信号处理课程,不仅要有完善的课堂教学,还要强调课外的实验支持。

在我们开设的数字信号处理课程中,除了包含信号与系统的基本知识、DSP构建、计算机算法、有限字长和定点处理器、快速傅里叶变换的应用以及实时多媒体和通讯应用等教学内容,还建立了一个有力的硬件实验支撑。在课程的最后,学生们需要利用DSP开发平台实现对语音信号的采样、滤波、频谱分析及D/A转换,通过对语音信号进行较为完整的处理来加深对课内教学内容的理解。此外,通过使用DSP内部并行的执行单元、硬件循环、以寻址为模,多重DMA和片内存储器,学生将对DSP处理器有深刻的认识,加深对DSP算法的理解,探索DSP处理器相比通用处理器在构建应用系统上的优势。

数字信号处理实验包括八套实验设备,每套实验设备包含两种不同的TI公司DSP开发系统、信号发生器及示波器。DSP开发系统不仅包含DSP处理器,还包括A/D、D/A、SDRAM、FLASH、扬声器等外围设备,可以开展数据采集、滤波、频谱分析等实验。学生以小组的方式开展工作,每个小组三名成员,要在两周内完成每一个实验所要求完成的任务。为了使学生灵活安排实验时间、充分利用实验资源,我们构建了一个小型的“虚拟实验室”,使学生能够通过网络直接使用硬件设备和软件,方便地学习研究DSP的应用。我们采取开放的实验室使用政策,学生们可以24小时以他们方便的途径随意使用实验室,对于在线的学生,采用了类似的“提问-回答”的会议方式,在这个会议上助教回答学生的提问,提供实验指导。此外所有的讲稿笔记、家庭作业和其他分配任务,包括实验室考试都会在网上发送而且也可以在网上上交和批改。

2 虚拟实验室构建

实验室共有12套实验设备,每套设备包括一台Tektronix AFG310函数发生器,一台Tektronix TDS3012B示波器,一个TI的DSK5510的工具包和一个DSK6713工具包。此外,软件工具包括由项目管理人,用户图形界面,编译器,连接器,调试器,源编码浏览器和编辑工具(如TI的Codecomposer)组成的IDE。NI Labview是一个用模块代替代码行来创造应用的图形语言。它用于远程访问来同时和AFG310函数发生器和TDS3012数字滤波器进行通信。此外,执行实验还需要一些附件如扬声器,耳机和网络摄影。虚拟实验室的目标是创造一个和实物实验室尽可能接近的环境,它必须能远程控制,所有的软件硬件工具都能够实时使用,这样在线的学生就可以实现远程连接到实验室并且方便地使用工具和设备。图1(a)展示了虚拟实验室的安装连接。在实验室内,主控计算机通过各种接口和协议与硬件设备的控制端口相连,实现对各种设备的操作,如通过HTTP接口控制TDS3012B示波器,通过GPIB接口控制AFG310函数发生器,通过USB接口控制DSK5510及DSK6713开发平台。这些设备的输入或输出通道通过一个称作“开关矩阵”的设备连接在一起,开关矩阵由主控计算机控制,可以灵活组合成不同的实验平台,其结构如图1(b)所示。学生终端经校园网连接到实验室主控计算机,通过LabviewTM图形用户语言来实现对实验设备的远程操控。

实验设备及开关矩阵的电源都由可远程控制的电源管理单元来供电,在线用户能够独立启动函数发生器、示波器、主控计算机、TDSK5510工具包和DSK6713工具包。实验室使用的是来自Synaccess的NP08,它拥有八个电源控制端口,一个独立的电源控制单元就可以使用八个实验设备。NP08提供三个用户权限级别:

管理员级别:管理系统配置和无限制有权使用所有电源引口和所有串行端口。

用户级别:允许每个用户保留和管理他自己的端口,以及改变大多数系统配置。

匿名级别(客人):用户可以观看所有设置和操作没有限制的电源引口和串行控制台端口。

标记不同级别的权限是非常有用的,例如实验室助教会授予管理员权限以便于控制所有可用的实验台,在线学生会被授予一个用户名/口令和指定的权限访问他自己的实验台。用户可以利用telnet命令发送指令到控制单元,用来重启用户设备、永久打开/关闭用户电源等。此外,系统会周期性地利用Ping指令查询用户的设备,如果用户设备停止应答Ping的请求,该设备将会重启。为了确保电源管理单元的正常工作,用户可以通过网络摄影看见实验台来确保设备正常工作。要注意的是视频只是作为反馈而不是展示工具。视频不是用来读仪器的显示,用户可以使用LabviewTM图形用户界面来显示和控制仪器。

3 在线实验

数字信号处理课程虚拟实验室目前开设了两个实验,一个是语音信号的采集与滤波,另一个是双音多频(DTMF)信号的生成。这两个实验分别基于DSK6713开发平台与DSK5510开发平台进行,实验设备连接如图2所示。

在语音信号处理实验中,主控计算机中保存的语音或音乐信号(已叠加噪声)经扬声器输出端(LINE OUT)进入DSK6713开发板的A/D模块,经采集后得到的数字信号传给TMS320C6713处理器,在那进行低通滤波,之后经DSK6713的D/A模块转变为模拟信号,经主控计算机的麦克风输入端(LINE IN)传入主控计算机。学生可在远程终端上选择源信号,并且可以在远程终端上播放源信号及处理后的结果以进行对比。在第二个实验中,由DSK5510开发板的TMS320C5510处理器根据主控计算机设定的参数生成DTMF信号(多个单频信号的叠加),经开发板的D/A模块转变为模拟信号后送至TDS32012B示波器进行信号时域波形显示及FFT频谱显示。学生可以通过LabviewTM界面操控示波器并看到处理结果。这两个实验都使用TI公司的Code Compser软件进行开发。对虚拟实验室进行测评,结果表明实验步骤简洁清晰,实验所得结果和在实验室中实际进行操作的结果相同。音频流的声音质量也得到所有实验者的满意,远程软件工具Code Composer Studio运行也十分流畅。

4 结论

我们采用了一个简单有效的方法来远程访问硬件和软件,并构建了一个数字信号处理课程虚拟实验室。在线的学生可以通过虚拟实验室开展实时硬件实验,并得到和在实际实验室相同的准确的结果。由此可以采取开放的实验室管理与使用政策,方便学生学习研究DSP的应用。

摘要:本文设计了一个基于校园网的数字信号处理课程虚拟实验室,该实验室可以通过远程控制为各实验设备单独供电,并通过开关矩阵灵活组合连接实验设备。运行表明虚拟实验室构造简便,结果正确,可以为学生提供一个方便的开放实验室。

关键词:数字信号处理,虚拟实验室

参考文献

[1]缪晓芸,吴正明.虚拟实验室的研究与探讨[J].福建电脑,2009,(11):33-35.

[2]陈学军.基于虚拟仪器的网络实验室的研究及实现[J].莆田学院学报,2009,(10):28-30.

[3]洪波.基于Web的高校开放式实验教学系统的设计[D].贵州大学硕士学位论文,2007.

数字信号处理—课程设计 篇3

摘 要:根据目前数字图像处理技术发展和数字图像处理课程的教学情况,为增强学生对理论知识的理解,本文介绍了基于VC++软件平台的数字图像处理课程教学辅助软件的设计和实现。该软件主要包括图像文件操作、图像变换、图像增强与复原、图像分割和数学形态学等理论知识,并提供一个良好的交互式平台,可以自由调整各种算法的参数,使学生在较短的时间内熟悉并掌握数字图像处理课程中讲述的各种算法和技术。

关键词:数字图像处理;教学软件;VC++

中图分类号:TP391.41-4 文献标识码:A 文章编号:1007-9599 (2013) 09-0000-02

1 引言

数字图像处理是指将利用计算机对二维图像信号进行采集、处理和分析的过程。数字图像处理课程是计算机视觉、模式识别和人工智能等专业的一门重要专业课程,涉及面广、实用性强。数字图像处理技术涉及的环节较多,主要包括图像采集、图像变换、图像增强与复原、图像分割等,每个图像处理环节的方法也多种多样,而且数字图像处理技术的基础理论和算法比较抽象,对于学生来说,在课内时间掌握数字图像处理课程的主要内容有一定难度。现在有大量的图像处理应用软件,如Photoshop,但这些软件多是面向广告设计、图像修饰处理的应用软件,不适合数字图像处理技术的基本知识和案例教学。

本文设计并实现了基于VC++开发环境下的数字图像处理课程的教学辅助软件,可以提供数字图像处理系统各处理环节相关算法实现过程的演示,形象生动地完成该课程的各教学单元的授课内容,较好地帮助学生熟悉并消化数字图像处理技术涉及的理论和技术方法。

2 教学辅助软件设计

VC++是在Windows平台下的专业软件开发平台,广泛用于各种软件的开发。MFC是Microsoft公司提供的一套类库,以C++类的形式封装了Windows的API,是一套面向对象的函数库,方便用户编程。MFC是Win API和C++的结合,提供了MFC AppWizard自动生成框架,利用MFC中提供的各种类,可以简单地构建一个应用程序框架。OpenCV是一个基于C/C++语言的开源图像处理函数库,包含实现图像处理和计算机视觉方面的很多通用算法[1],其代码具有很好的移植性。在安装好VC++的Windows系统下安装好OpenCV库,并对软件进行配置,在工程中配置好所需要包含的库文件的路径等,即可方便的调用OpenCV库中的函数。

2.1 软件设计总体结构

本文所设计的软件主要围绕数字图像处理课程的基本知识和图像处理技术涉及的各种方法进行架构的。软件基于MFC的AppWizard多文档应用程序框架,并结合OpenCV库中的一些图像处理函数和设备无关位图DIB的一些操作函数实现了多种图像处理功能,如图1所示。

2.2 软件功能设计与实现

数字图像处理技术包含很多环节,根据软件的总体架构,本软件主要设计了文件操作、图像变换、图像增强与复原、图像分割和数学形态学模块,每个模块还设计了不同功能块。各模块的图像处理功能均可以对读入的图像进行连续处理,本节展示了部分功能块的处理过程。

2.2.1 文件操作

文件操作模块能够实现对图像等文件的常规操作,如打开、保存、另存为、打印等功能。本软件主要处理BMP位图格式的灰度图像,通过此模块可将待处理的图像读入到内存,以供其他模块调用,用于进一步图像处理。对于图像处理的每个步骤所得的结果图像均可以单独显示,并可进行保存等操作。

2.2.2 图像变换

图像变换模块可以实现位图的几何变换和图像的点运算,如图像平移,水平镜像,垂直镜像,图像缩放,图像旋转,分段线性拉伸,图像反色,二值化,阈值变换,窗口变换等功能。图像变换过程中需要设定的参数可以通过弹出对话框的方式进行设定,完成人机交互。

图2为利用图像反色和图像阈值变换处理图像的效果展示,其中左侧图为原始lena图像,中间的图为对原始lena图像进行反色后得到的图像,右侧图为对原始lena图像进行阈值(参数值设为200)变换后的图像。

图1 数字图像处理教学辅助软件总体结构图

图2 图像变换处理示意图

2.2.3 图像增强与复原

图像增强与复原模块可以实现图像滤波、图像对比度增强、图像恢复等功能,如对图像添加噪声、图像平滑、直方图均衡化、图像锐化处理、傅里叶变换、低通滤波、高通滤波、小波变换等处理。在添加噪声可以选择高斯噪声或椒盐噪声,图像平滑可以选择3*3、5*5、7*7等不同大小的模板进行邻域平均处理和中值滤波处理。图像直方图均衡化可以将直方图分布不均的图像进行调整,使整幅图像视觉效果更好。图像锐化可以实现梯度锐化和拉普拉斯锐化,能够提高图像的对比度。低通滤波可实现理想低通滤波和巴特沃斯低通滤波,高通滤波可实现理想高通滤波和巴特沃斯高通滤波。傅里叶变换可以实现图像从空间域到频率域的变换,可以对图像进行一些频域处理后再进行反变换。小波变换可以将图像分解成一个低频概貌子图像和一系列高频细节子图像,在变换域对这些子图像进行处理后进行反变换可实现对原图的修改。

图3为利用噪声添加和邻域平均法的效果展示图,首先,读取原始lena图像(左侧图像),然后对原始lena图像添加高斯噪声(中间图像),最后利用邻域平均法( 窗口)对含噪图像进行平滑处理(右侧图像)。

图3 图像平滑处理示意图

图4为对图像进行傅里叶变换和低通滤波处理的效果展示图,左侧图像为一幅黑色正方形图像,中间图像为其傅里叶变换频谱图,右侧图像为进行理想低通滤波后的结果图。

图4 图像滤波处理示意图

2.2.4 图像分割

图像分割模块可以实现图像目标分割功能,如图像边缘检测和区域分割等处理。在图像边缘检测处理中,可以选择Roberts、Sobel、Prewitt、Laplacian和Canny算子进行边缘检测。区域分割处理中可以采用直方图阈值分割、自适应阈值分割和区域增长的方法,其中直方图阈值分割的阈值可以通过弹出对话框进行参数选择。除了上述功能外,此模块还可以完成边界跟踪、Hough直线检测等功能。边界跟踪模块可以实现对白色背景的二值图像中黑色目标的边界跟踪,对轮廓进行提取。Hough直线检测根据Hough变换点-线对偶性原理,利用OpenCV中Hough线变换函数,可实现标准Hough变换和累计统计概率Hough变换,将检测出的直线进行标注。

图5为图像边缘检测和直线检测示意图,其中左上图为原始图像,右上图为利用Roberts算子进行的边缘检测结果图,左下图为利用Canny算子进行的边缘检测结果图,右下图为利用Hough变换检测直线的结果图,检测出的直线标注成红色。

2.2.5 数学形态学

数学形态学模块可以对图像进行腐蚀、膨胀、开运算、闭运算,这四个运算是数学形态学的四个基本运算。数学形态学的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的[1]。利用这些运算并结合图像分割模块可以实现图像的边缘检测与分割、特征提取、图像形状识别与修改等处理。此外,该模块还包含击中击不中和细化处理,利用击中击不中变换可以进行目标检测与定位。

图6为一个利用数学形态学进行膨胀的示意图。首先读入原始图像(左侧图像),然后对其进行二值化处理(中间图像),最后对二值化处理后的图像进行膨胀处理(右侧图像)。

图5 图像边缘检测及直线检测示意图

图6 数学形态学膨胀处理示意图

3 结束语

本文所介绍的数字图像处理课程教学辅助软件可以实现对图像的文件操作、图像变换、图像增强与复原、图像分割和数学形态学功能。本软件的开发可有效地展示数字图像处理课程中各种基本算法的实现过程和处理结果,有利于加深学生对该课程理论知识和实现技术的理解与掌握,能够提高该课程的教学效果。

参考文献:

[1]陈胜勇,刘胜等.基于opencv的计算机视觉技术实现[M].北京:科学出版社,2008.

[2]印月.基于VC++6.0的数字图像处理综合性设计实验[J].实验科学与技术,2011,Vol.9(3):10-11.

[3]黎宁,徐晓波,牛征.MATLAB平台下图像处理实验教学软件的实现[J].电气电子教学学报,2001,Vol.23(5):55-58.

[4]张华,展晓凯.基于VC++的数字图像处理系统的设计与实现[J].潍坊学院学报,2011,Vol.11(2):15-21.

[5]秦志远,张占睦,莫华.计算机图像处理可视化软件设计与实现[J].测绘学院学报,2001,Vol.18(1):33-35.

数字信号处理课程总结(全) 篇4

以下图为线索连接本门课程的内容:

xa(t)数字信号前置滤波器A/D变换器处理器D/A变换器AF(滤去高频成分)ya(t)x(n)

一、时域分析

1. 信号

 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) 序列运算:加、减、乘、除、反褶、卷积  序列的周期性:抓定义

njwna、e(n)(可表征任何序列)cos(wn)u(n)、 典型序列:、、RN(n)、x(n)x(m)(nm)

m特殊序列:h(n)2. 系统

 系统的表示符号h(n) 系统的分类:y(n)T[x(n)]

线性:T[ax1(n)bx2(n)]aT[x1(n)]bT[x2(n)] 移不变:若y(n)T[x(n)],则y(nm)T[x(nm)] 因果:y(n)与什么时刻的输入有关 稳定:有界输入产生有界输出

 常用系统:线性移不变因果稳定系统  判断系统的因果性、稳定性方法  线性移不变系统的表征方法:

线性卷积:y(n)x(n)*h(n)

NMk差分方程: y(n)ak1y(nk)bk0kx(nk)3. 序列信号如何得来?

xa(t)x(n)抽样

 抽样定理:让x(n)能代表xa(t) 抽样后频谱发生的变化?  如何由x(n)恢复xa(t)?

sin[xa(mT)T(tmT)]

xa(t)=mT

(tmT)

二、复频域分析(Z变换)

时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。A. 信号 1.求z变换

定义:x(n)X(z)x(n)znn

收敛域:X(z)是z的函数,z是复变量,有模和幅角。要其解析,则z不能取让X(z)无穷大的值,因此z的取值有限制,它与x(n)的种类一一对应。

 x(n)为有限长序列,则X(z)是z的多项式,所以X(z)在z=0或∞时可能会有∞,所以z的取值为:0z;

 x(n)为左边序列,0zRx,z能否取0看具体情况;

 x(n)为右边序列,Rxz,z能否取∞看具体情况(因果序列);  x(n)为双边序列,RxzRx 2.求z反变换:已知X(z)求x(n)

 留数法

 部分分式法(常用):记住常用序列的X(z),注意左右序列区别。 长除法:注意左右序列 3.z变换的性质:

 由x(n)得到X(z),则由x(nm)zmX(z),移位性;  初值终值定理:求x(0)和x();

 时域卷积和定理:y(n)x(n)*h(n)Y(z)X(z)H(z);  复卷积定理:时域的乘积对应复频域的卷积;  帕塞瓦定理:能量守恒

nx(n)212X(ejw)dw2

4.序列的傅里叶变换

公式:X(ejw)x(n)enjwn

x(n)12X(ej)ejnd

注意:X(ejw)的特点:连续、周期性;X(ejw)与X(z)的关系 B. 系统

由h(n)H(z),系统函数,可以用来表征系统。

 H(z)的求法:h(n)H(z);H(z)=Y(z)/X(z);  利用H(z)判断线性移不变系统的因果性和稳定性  利用差分方程列出对应的代数方程

MNMy(n)ak1y(nk)kbk0x(nk)kY(z)X(z)bk0Nkzk

k1ak1zk 系统频率响应H(ejw):以2为周期的的连续函数

H(e)jwh(n)enjwn

H(ejw)h(n)enjwn,当h(n)为实序列时,则有H(ejw)=H*(ejw)

三、频域分析

根据时间域和频域自变量的特征,有几种不同的傅里叶变换对

 时间连续,非周期频域连续(由时域的非周期造成),非周期(由时域的连续造成); X(j)x(t)ejtdt

x(t)12X(j)ejtd

 时间连续,周期频域离散,非周期

X(jk0)1T0T0/2x(t)ejk0tdt

T0/2x(t)X(jk0)ejk0t

 时间离散,非周期频域连续,周期

X(e)jwx(n)enjwn

x(n)12X(ej)ejnd,wT(数字频率与模拟频率的关系式)

 时间离散,周期频域离散,周期

~X(k)N1n0~x(n)ej2Nkn~x(n)W

knNn0N11~x(n)NN1n0~X(k)ej2Nkn1NN1n0~knX(k)WN

 本章重点是第四种傅里叶变换-----DFS  注意:

x(n)和X(k)都是以N为周期的周期序列; 1)~x(n)和X(k)的定义域都为(,)

2)尽管只是对有限项进行求和,但~;

~~~例如:k0时,X(0)N1x(n)

n0~~k1时,X(1)N1n0~x(n)ej2Nn

2NNnN1~kN时,X(N)N1n0j~x(n)en02N~~x(n)=X(0)

~kN1时,X(N1)N1n0~x(n)ej(N1)n~X(1)

x(n)也有类似的结果。x(n)和X(k)一

同理也可看到~可见在一个周期内,~~一对应。

 比较X(e)jwx(n)enjwn~和X(k)N1n0~x(n)ej2Nkn~x(n)W,当x(n)knNn0N1x(n)的一个周期内有定义时,即x(n)=~x(n),0nN1,则在只在~N12Nj2Nk时,X(ejw)X(k)。

1,kr 0,kr~ en0(kr)nx(n)和X(k)的每个周期值都只是其主值区间的周期延拓,所以求和 因为~~在任一个周期内结果都一样。

 DFT:有限长序列x(n)只有有限个值,若也想用频域方法分析,它只属于序列的傅里叶变换,但序列的傅氏变换为连续函数,所以为方便计算机处理,也希望能像DFS一样,两个域都离散。将x(n)想象成一个周期x(n)的一个周期,然后做DFS,即 序列~

~X(k)N1n0~x(n)ej2NknN1n0x(n)ej2Nkn

x(n)只有x(n),不是真正的周期序列,但因为求和只需N注意:实际上~个独立的值,所以可以用这个公式。同时,尽管x(n)只有N个值,但依上式求出的X(k)还是以N为周期的周期序列,其中也只有N个值独立,这样将~X(k)规定在一个周期内取值,成为一个有限长序列,则会引出

N1j2Nkn~DFT X(k)x(n)en0RN(k)

x(n)1NN1n0X(k)ej2NknRN(n)

比较:三种移位:线性移位、周期移位、圆周移位

三种卷积和:线性卷积、周期卷积、圆周卷积

重点:1)DFT的理论意义,在什么情况下线性卷积=圆周卷积 2)频域采样定理:掌握内容,了解恢复

3)用DFT计算模拟信号时可能出现的几个问题,各种问题怎样引起?

混叠失真、频谱泄漏、栅栏效应

 FFT:为提高计算速度的一种算法

1)常用两种方法:按时间抽取基2算法和按频率抽取基2算法,各自的原理、特点是什么,能自行推导出N小于等于8的运算流图。2)比较FFT和DFT的运算量; 3)比较DIT和DIF的区别。

四、数字滤波器(DF)

一个离散时间系统可以用h(n)、H(z)、差分方程和H(ejw)来表征。问题:

1、各种DF的结构

2、如何设计满足要求指标的DF?

3、如何实现设计的DF?

A. 设计IIR DF,借助AF来设计,然后经S---Z的变换即可得到。

1)脉冲响应不变法:思路、特点 2)双线性变换法:思路、特点、预畸变 3)模拟滤波器的幅度函数的设计 B. 设计FIR DF 1)线性相位如何得到?条件是什么?各种情况下的特点。2)窗函数设计法:步骤、特点 3)频率抽样法:步骤、特点 C. 实现DF

Ma

标准形式:H(z)k0Nkzk

数字图像处理课程教学方法探讨 篇5

摘要:针对《数字图像处理》这门课程具有学科跨度大、理论性强、实用性广的特点,并结合学生的实际情况,对课程的教学模式进行了探讨。首先,根据选用教材内章节之间的联系,把各章的知识点结合在一起,实现对教学内容的有效整合。其次,针对教材理论性强的特点,在讲授时通过与实际的案例进行结合,激发学生的学习兴趣。最后,通过实践加深对理论知识的理解,同时也培养了学生的独立思考能力和创新能力。

关键词:数字图像处理;教学内容;教学模式;教学效果

中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2014)13-3060-04

Discussion on Teaching Method for Digital Image Processing

QIN Hua-feng1,WANG Xing-qiong2,KANG Qiu-hong1

(1.School of Computer Science and Information Engineering,Chongqing Technology and Business University,Chongqing 400067,China; 2.Chongqing Banan Middle School,Chongqing 400054,China)

Abstract: As the digital image processing has the large discipline span,strong theory,wide application,this paper discusses the teaching method based on the actual situation of students.Firstly,the knowledge is combining based on the relation among different chapters,which can integrate the teaching contents effectively.Then the students’ interest is aroused in the teaching process using actual case.Finally,the student can understand the theory clearly.At the same time,theirs independent thinking and innovation ability can be improved.Key words: Digital image processing; Teaching content; Teaching mode; Teaching effect

概述

数字图像处理诞生于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。直到20世纪60年代初期数字图像处理才发展成为一门学科。美国喷气推进实验室首次将数字图像处理实际成功应用到对几千张月球照片的处理,并利用计算机对处理后的图像进行分析,成功地绘制出月球表面地图。数字图像处理取得的另一个巨大成就是在医学上获得的成果。当前图像处理技术在工业自动化、工业检测、医学、遥感探测等各个方面都发挥着十分重要的作用[1]。

《数字图像处理》[2,3]是集成计算机科学、电子学、信息论、光学、数学等学科的一门综合性学科。本课程是空间信息工程系、摄影测量与遥感系开设的必修的专业基础课之一。它的起点高、难度大,理论性很强。学生在学习时,普遍感到数字图像处理的概念抽象,对其中的分析方法与基本理论不能很好地理解与掌握。如何提高学生对数字图像处理技术的学习兴趣,以及学生的图像处理技术的应用能力,是数字图像处理课程建设、课程改革的重要内容。现就接合自身在数字图像处理领域多年的研究经历以及教学经验,并根据学生的反馈信息,对该课程的教学模式进行了探索,希望有助于提高教学效果和教学水平;知识点的整合

数字图像处理涉及到的知识点繁琐,但是通过有效的整合可以使得教学体系前后连贯,教学内容较为紧凑,同时使得学生理解起来更为容易,思路更加清晰。如以清华大学出版社的出版的《数值图像处理和分析》为例,全书一共11章。根据教材内容的前后联系和学生的知识背景,对教学内容进行了整合,如表1所示。前面的第一、二章是介绍数值图像处理的概念,这部分可以引导学生自学。原书第三、五、六章主要利用各种变换来图像质量的改善。第四章是图像的编码与压缩,主要是实现对图像的存储和传输。七、八、九章的内容主要是图像的特征的提取和分类。最后两章是数值图像处理在数字水印和车牌识别方面的应用,可以利用两个专题讲座的形式来进行授课。经过整合,把所有的内容分成了三个教学模块,使得教学更加紧凑,条理清晰,学生理解起来也更容易。

表1 教学内容的整合[整合前内容\&整合后内容

章节的调整 整合\&绪论\&绪论\&引导学生自学\&数字图像的表述与处理\&数字图像的表述与处理\&图像增强\&图像增强\&图像质量的改善

\&

数字图像处理的方法\&图像的编码与压缩\&图像复原\&图像复原\&图像重建\&图像重建\&图像的编码与压缩\&图像的存储和传输。\&图像分割技术\&图像分割技术\&图像特征的提取与分类\&图像的特征提取与分析\&图像的特征提取与分析\&图像的匹配与识别\&图像的匹配与识别\&基于MATLAB数字水印系统设计\&基于MATLAB数字水印系统设计\&专题讲座\&车辆牌照识别系统设计\&车辆牌照识别系统设计\&] 基础理论知识

3.1 案例教学

案例教学是通过一个具体教育方式来实现场景的重现,引导学生对这些特殊情景进行讨论和分析,加深学生对知识点的理解,培养学生积极学习兴趣和创新力的一种教学方法[3]。数值图像处理涉及到微积分、偏微分、小波分析、矩阵论、信息论预编码等数学知识。因此,需要学生有一定的数学基础,然而工科的学生的数学基础普遍较差,单从理论方面来进行讲解学生很难理解和掌握。幸运的是,虽然这门课程设计的数学知识面广,但是这些知识都具有较强的应用背景,如果在授课的过程中能够结合实际的例子来进行分析能,就可以使得复杂的数学知识变得简单易懂,学生掌握起来也更加轻松。例如,信号可以按它的频率分为高频信号和低频信号。那么什么是信号的频率以及怎么判断高频信号和低频信号,在授课过程中应给以详细的解释,最后举一个例子如给出如下一幅雷娜图像。图中的帽子上纹理灰度值变化较快,所以就是高频部分[4]。而脸部灰度值比较平滑(变化较慢),所以是低频部分。

图1 雷娜图像

3.2 内容的适度延伸

在当今的世界,知识的更新是很快的。目前大部分知识的载体是书籍、报刊、杂志。在这几种重要载体中书籍的知识更新度是最慢的,然而现在上课用的课本基本上都是以书籍的呈现形式。因此如何把书本上经典而滞后的知识和该领域最新的研究成果联系起来是非常关键的。一方面,可以使得知识具有连贯性,使得学生更容易系统的掌握;另一方面,以拓宽知识面和提高学习的积极性。所以尝试性的要求学生查阅相关资料,了解本领域的研究进展是有必要的。

在教学过程中,除了常规的讲解书本上的理论知识外,将其中部分内容适当整理后,以课堂讲座形式开展,并对相关知识作适当的补充和延伸[5],使知识更系统化,立体化。例如,在讲授图像质量的改善方法的内容时,会经常用到各种图像变换的方法,如傅立叶变换[6]、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理[7]。其优点在于不仅可减少计算量,而且可获得更有效的处理。当学生掌握了各种基本变换方法后,可以引入小波变换方法,并介绍小波变换原理以及与经典变换方法的相似性。然后,给出小波变换的优势即在时域和频域中都具有良好的局部化特性。如果学生有兴趣的话,可以介绍在小波变换的基础上进一步发展得到的脊波变换,并通过一些图像例子来加深理解,如图

2、图3和图4所示。这样的讲授不仅可以让学生更系统的理解各种变换理论而且通过研究整个理论体系的发展可以激发学生的兴趣和创造性。实践教学

实践教学是教学课程的重要组成部分,它是巩固理论知识和加深对理论认识的有效途径,是培养具有创新意识的高素质工程技术人员的重要环节,是理论联系实际、培养学生的独立思考和创新能力的重要平台[8]。相对于理论教学而言,实践教学是教学过程中最薄弱的环节。为了有效提高实践教学,根据学生的实际情况对相关的实验内容的选取进行了相应的改革。

4.1实验准备

考虑到电子信息专业的同学不同于计算机专业,没有开设VC 课程,但开设了MATLAB 课程,已经掌握了MATLAB 的一些基本编程能力,另外,MATLAB 软件为数字图像处理提供了功能丰富的图像处理工具箱。它集成了一系列支持图像处理操作的函数。涵盖了图像处理的几乎所有的技术方法,是学习和研究图像处理的人员的宝贵资料和加工工具。因此,选取计算能力强的MATLAB软件作为教学软件是必要的。此外,还需要准备实验所需的图像。

4.2 实验内容

实验内容的选取也是相当关键的。根据学生掌握知识的能力以及知识的前后衔接关系,选择图像变换、增强、分割、特征提取和识别等作为实验内容。然后根据知识点的难易程度分为基本实验、开放型实验和演示实验。这样具有一定的层次感,使得学生接受起来较为容易。例如,对于傅里叶变换的实验,首先要求学生能够对图像进行傅里叶变换,并分析变换后的图像以及其逆变换后重构图像;当在这个试验中掌握了傅里叶变换后,再安排图像频域增强等实验。

4.3 实验内容拓展

通过理论知识的讲解以及基本实验的实施,学生能够较好的理解所学的知识,且能够将所学的知识应用于处理一幅具体图像。为了进一步培养学生独立思考和创新的能力,需要为一些有兴趣的学生提供一些参与教师科研项目的机会。例如通过课程设计的形式来为他们积累一些实践经验以及培养他们的创新能力。通过学生的积极参与,一方面,加深了对所学专业知识的理解,另一方面培养学生的学习兴趣和创新能力。结论

本文针对计算机、影像各专业对图像处理的要求和数字图像处理本身的特点,充分结合我校学生的实际情况,对《数字图像处理》课程的教学进行的尝试性的改革和探索。通过对教学内容的整合,使得教学内容更紧凑和调理更清楚。在理论知识的传授方面,结合了案例教学法和教学内容延伸法来进一步提高学生的学习兴趣和能力。最后,利用教学实践来巩固所学知识,增强学生的创造力。随着时代的发展以及知识的快速更新,对教学提出了新的要求。作为教学主体的教师,需要不断的地学习新的知识,总结教学经验,不断地探索和尝试新的教学方法才能与时俱进。

参考文献:

[1] 冈萨雷斯.(阮秋琦,阮宇智等)数字图像处理(第二版)[M].北京:电子工业出版社,2003.[2] 章毓章.图象处理和分析[M].清华大学出版社,2002.[3] 黄果,秦红英,许黎,等.浅谈数字图像处理课程教学改革[J].计算机光盘软件与应用,2013,3(7):280-281.[4] 王旭初,潘银松.《数字图像处理》实验的课题驱动式教学探索[J].电脑知识与技术,2010,34(6):9810-9811,9818.[5] 王雪.图像处理教学中如何培养学生的行业素质[J].长春教育学院学报,2013,29(1):145,157

数字电路课程设计——数字钟 篇6

《模拟电子技术课程设计》任务书

一、课题名称:数字钟的设计

二、技术指标:

(1)掌握数字钟的设计、组装和调试方法。(2)熟练使用proteus仿真软件。(3)熟悉各元件的作用以及注意事项。

三、要求:

(1)设画出总体设计框图,以说明数字钟由哪些相对独立的功能模块组成,标出各个模块之间互相联系。(2)设计各个功能模块的电路图,加上原理说明。(3)选择合适的元器件,设计、选择合适的输入信号和输出

方式,确保电路正确性。

指导教师:廖俊东 学生:蔡志荷

电子信息工程学院

2018年1月 10日

课程设计报告书评阅页

课题名称:数字钟的设计 班级:15级电子信息工程4班 姓名:蔡志荷

2018年1月 10日

指导教师评语:

考核成绩:指导教师签名: 年月

目录

摘要..................................................................................................................................................1 第1章设计任务与要求...................................................................................................................2

1.1 设计指标数字钟简介.....................................................................................................2 1.2 具体要求.........................................................................................................................2 1.3 设计要求.........................................................................................................................3 第2章元件清单及主要器件介绍...................................................................................................4

2.1 元件清单.........................................................................................................................4 2.2 主要器件介绍.................................................................................................................4

2.2.1 74LS90计数........................................................................................................4 2.2.2 74LS47.................................................................................................................5 2.2.3 七段数码显示器.................................................................................................7

第3章设计原理与电路...................................................................................................................8

3.1 计时电路.........................................................................................................................8

3.1.1 计秒、计分电路.................................................................................................8 3.1.2 计时电路.........................................................................................................10 3.2 校时电路.......................................................................................................................11 3.2.1 报时锁存信号...................................................................................................13 3.2.2 报时...................................................................................................................13 第4章仿真结果及误差分析.........................................................................................................15 4.1 实验结果.......................................................................................................................15 4.2 实时分析.......................................................................................................................15 第5章设计总结.............................................................................................................................16 参考文献.........................................................................................................................................17

四川工业科技学院数字电路课程设计

摘要

本次课程设计的主题是数字电子钟。干电路系统由秒信号发生器、“时、分、秒”计数器、显示器、整点报时电路组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,这里用多谐振荡器加分频器来实现。将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计时器,可实现对一天24小时的累计。译码显示电路将“时”、“分”、“秒”计数器的输出状态送到七段显示译码器译码,通过七位LED七段显示器显示出来。整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发蜂鸣器实现报时。

数字电子时钟优先编码电路、译码电路将输入的信号在显示器上输出;用控制电路和调节开关对LED显示的时间进行调节,以上两部分组成主体电路。通过译码电路将秒脉冲产生的信号在报警电路上实现整点报时功能等,构成扩展电路。本次设计由震荡器、秒计数器、分计数器、时计数器、BCD-七段显示译码/驱动器、LED七段显示数码管设计了数字时钟电路,可以实现:计时、显示,时、分校时,整点报时等功能。

关键词:数字时钟,振荡器,计数器,报时电路

四川工业科技学院数字电路课程设计

第1章 设计任务与要求

1.1 设计指标数字钟简介

数字钟电路是一款经典的数字逻辑电路,它可以是一个简单的秒钟,也可以只计分和时,还可以计秒、分、时,分别为12进制或24进制,外加校时和整点报时电路。

数字钟已成为人们日常生活中必不可少的生活日用品。广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、集成电路有体积小、功耗小、功能多、携带方便等优点。

因此本次设计就用数字集成电路和一些简单的逻辑门电路来设计一个数字式电子钟,使其完成时间及星期的显示功能。多功能数字钟采用数字电路实现对“时”、“分”、“秒”数字显示的计时装置。具有时间显示、走时准确、显示直观、精度、稳定等优点,电路装置十分小巧,安装使用也方便而受广大消费的喜爱。

1.2 具体要求

1、掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;

2、进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力;

3、提高电路布局,布线及检查和排除故障的能力。

四川工业科技学院数字电路课程设计

1.3设计要求

1、设计一个有“时”、“分”、“秒”(23小时59分59秒)显示,且有校时功能的电子钟。

2、用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试

3、画出框图和逻辑电路图、写出设计、实验总结报告。

4、整点报时。在59分51秒时输出信号,音频持续10秒,在结束时刻为整点。

四川工业科技学院数字电路课程设计

第2章 元件清单及主要器件介绍

2.1 元件清单 1、74LS90(6个)2、74LS47(6个)3、74LS00(6个)4、74LS20(6个)5、74LS04(6个)

6、共阳七段数码显示器(6个)

7、蜂鸣器(1个)

8、快关若干,电阻若干

2.2 主要器件介绍

2.2.174LS90计数

本题目核心器件是计数器,常用的有同步十进制计数器74HC160以及异步二、五、十进制计数器74LS90.这里选用的是74LS90芯片。

74LS90的引脚图如图2-1表示。

图2-1 74LS90内部是由两部分电路组成的。一部分是由时钟CKA与一位触发器Q0组成的二进制计数器,可记一位二进制数;另外一部分是由时钟CKB与三个触发器Q1、Q2、Q3组成的五进制异步计数器,可记五个数000~111.如果把Q0和CKB连接起来,CKB从Q0取信号,外部时钟信号接到CKA上,那么由时钟CKA和Q0、Q1、Q2、Q3组成十进制计数器。

R0(1)和R0(2)是异步清零端,两个同时为高电平有效;R9(1)和R9(2)是置

四川工业科技学院数字电路课程设计

9端,两个同时为高电平时,Q3Q2Q1Q0=1001,;正常计数时,必须保证R0(1)和R0(2)中至少一个接低电平,R9(1)和R9(2)中至少一个接低电平。

74LS90的功能表如表2-1所示。

表2-1 2.2.274LS47 74LS47的引脚图如图2-3表示。

图2-3 译码为编码的逆过程。它将编码时赋予代码的含义“翻译”过来。实现译码的逻辑电路成为译码器。译码器输出与输入代码有唯一的对应关系。74LS47是输出低电平有效的七段字形译码器,它在这里与数码管配合使用。

表2-2列出了74LS47的真值表,表示出了它与数码管之间的关系。

四川工业科技学院数字电路课程设计

表2-2 H=高电平,L=低电平,×=不定 74LS47译码器原理如图2-4.图2-4

74LS47是BCD-7段数码管译码器/驱动器,74LS47的功能用于将BCD码转化成数码块中的数字,通过它解码,可以直接把数字转换为数码管的显示数字,从而简化了程序,节约了 单片机的IO开销。因此是一个非常好的芯片!但是由于目前从节约成本的角度考虑,此类芯片已较少用,大部份情况下都是用动态扫描数码管的形式来实现数码管显示。

四川工业科技学院数字电路课程设计

2.2.3 七段数码显示器

共阳极七段数码管引脚图如图2-5表示。

图2-5 LED数码管中的发光二极管共有两种连接方法:

1、共阴极接法:把发光二极管的阴极连在一起构成公共阴极。使用时公共阴极接地,这样阳极端输入高电平的段发光二极管就导通点亮,而输入低电平的则不点亮。实验中使用的LED显示器为共阴极接法。

2、共阳极接法:把发光二极管的阳极连在一起构成公共阳极。使用时公共阳极接+5V。这样阴极端输入低电平的段发光二极管就导通点亮,而输入高电平的则不点亮,而输入高电平的则不点亮。

注:课设中使用的是共阳极数码管。

四川工业科技学院数字电路课程设计

第3章 设计原理与电路

3.1 计时电路

计时电路共分三部分:计秒、计分、计时。其中计秒和记分都是60进制,而计时为24进制。难点在于三者之间进位信号的实现。

3.1.1 计秒、计分电路

1、个位向十位的进位实现。

用两片74LS90异步计数器接成一个一步的60进制计数器。所谓异步60进制计数器,即两片74LS90的时钟不一致。各位时钟为1Hz方波来计秒,十位计数器的时钟信号需要从个位计数器来提供。

进位信号的要求是在十个秒脉冲中只产生一个下降沿,且与第十秒的下降沿对齐。只能从个位计数器的输出端来提供,不可能从其输入端来找。而计数器的输出端只有Q0、Q1、Q2、Q3四个信号,要么是其中一个,要么是它们之间的逻辑运算结果。

把个位的四个输出波形画出来,如图3-1所示。

图3-1 由于74LS90是在时钟的下降沿到来时计数,所以Q3正好符合要求,在10秒之内只给出一个下降沿,且与第19秒的下降沿对齐。Q2虽然也只产生一个下降沿,但产生的时刻不对。这样,个位和十位之间的进位信号就找到了,把个位的Q3(11端)连接到十位的CKA(14端)上。

四川工业科技学院数字电路课程设计

2、六十进制的实现

当几秒到59时,希望回00.此时个位正好计满十个数,不用清零即可自动从9回0;十位应接成六进制,即从0~5循环计数。用异步清零法,当6出现的瞬间,即Q3Q2Q1Q0=0110时,同时给R0(1)和R0(2)高电平,使这个状态变成0000,由于6出现时间很短,被0取代。接线如图3-2所示。

图3-2 当十位计数到6时,输出0110,其中正好有两个高电平,把这两个高电平Q2和Q1分别接到74LS90的R0(1)和R0(2)端,即可实现清零。一旦清零,Q2和Q1都为0,不能再继续清零,恢复正常计数,直到下次再同时为1。

计秒电路的仿真图如图3-2所示,计分电路和计秒电路是完全一致的,只是周期为1S的时钟信号改成了周期为60秒即1分钟的时钟信号。

3、秒向分的进位信号的实现

积分电路的关键问题是找到秒向分的进位信号。当秒电路计到59秒时,产生一个高电平,在计到60秒时变成低电平,来一个下降沿送给计分电路做时钟。计秒电路在计到59时的十位和个位的状态分别为0101和1001,把这四个1与起来即可,即十位的Q2和Q0,个位的Q3和Q0,与的结果作为进位信号。使用74LS20四入与非门串反相器构成与门,如图3-3所示。

四川工业科技学院数字电路课程设计

图3-3 计分电路与计秒电路一样,只是四输入与门产生的信号应标识为59分。

3.1.2 计时电路

用两片74LS90实现二十四进制计数器,首先把两片74LS90都接成十进制,并且两片之间连接成具有十的进位关系,即接成一百进制计数器,然后在计到24时,十位和个位同时清理。计到24时,十位的Q1=1,个位的Q2=1,应分别把这两个信号连接到双方芯片的R0(1)和R0(2)端。如个位的Q2接到两个74LS90的R0(1)清零端,十位的Q1接到两个74LS90的R0(2)清零端。

计时电路的个位时钟信号来自秒、分电路产生59分59秒两个信号相与的结果,如图3-4所示。

图3-4

四川工业科技学院数字电路课程设计

计分和计时电路可以先单独用秒脉冲调试,以节省时间。联调时,可把秒脉冲的频率加大。

图3-5是一个链接好的简单的没有校时和报时的数字时钟电路。

图3-5 图中为了把数显集中到一块,可以直接把时、分、秒的数码管拖动到一起。但为了仿真时使器件管件的逻辑状态显示不影响数显的效果,可以从主菜单中把逻辑显示去掉即可。

3.2 校时电路

接下来把校时电路加上,校时电路主要完成校分和校时。选择较分时,拨动一次开关,分自动加一;选择校时时,拨动一次开关,小时自动加一。校时校分应准确无误,能实现理想的时间校对。校时校分时应切断秒、分、时计数电路之间的进位连线。

如图3-6,红色线框内是校时电路,由去抖动电路和选择电路组成。

四川工业科技学院数字电路课程设计

图3-6 其中,计到59分的信号已有,如图3-6中所示。只需把它和计秒电路的十位中的Q2Q0相与作为开始报时的一个条件即可。见图3-7,U16:A和U10:D组成的与门输出即为报时开始信号。

图3-7

四川工业科技学院数字电路课程设计

3.2.1 报时锁存信号

用秒个位的计数器输出进行四高一低的报时锁存信号。现在来分析一下50~59秒之间秒个位的状态。

秒个位:Q3 Q2 Q1 Q0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

结合题目要求,通过这些状态的观察发现,秒个位的Q3’和Q0逻辑与后,正好在秒个位计到1、3、5、7时产生高电平,0、2、4、6时产生低电平,可作低四声报时的锁存信号;秒个位的Q3和Q0逻辑与后,正好在秒个位为9时产生高电平,可做高音的报时锁存信号;这样就产生了两个报时锁存信号。

3.2.2 报时

把上述分析所得到的的报时开始信号分别和两个报时锁存信号相与,产生两路报时锁存信号,如图3-7,上面一路为高音报时锁存,下面一路为低音报时锁存。图中左面三个与非门实现的是与或逻辑,前面已介绍。

上下两路报时锁存信号分别与1kHz和500Hz的音频信号(20Hz~30kHz)相与或来驱动数字喇叭,实现整点报时功能。这里喇叭使用元件SOUNDER,它接收数字信号。

实验时,把59分50秒这个报时开始信号直接用高电平取代,这样比较省时。另外实际连接电路时,可用555定时器产生一个1kHz的方波,再经D触发器二

四川工业科技学院数字电路课程设计

分屏得到500Hz的方波信号。计时电路的1Hz方波也可由555定时器产生,但由于标准电阻和电容值的选择会带来一些积累误差,也可选用其他更精确的振荡电路来实现。

四川工业科技学院数字电路课程设计

第4章 仿真结果及误差分析

4.1 实验结果

成功设计一个有“时”、“分”、“秒”(23小时59分59秒)显示,有校时功能的电子钟。能够实现整点报时。在59分51秒时输出信号,音频持续10秒,在结束时刻为整点。且能够正常仿真。

如图4-1是完整的数字钟电路图。

图4-1 4.2 实时分析

本次课程设计电路完全按照仿真图所连的,在测试时,当开始进行时校时时,没有出现问题,但当进行到分校时时,发现计数电路的秒电路开始乱跳出错。因此,电路一定是有地方出错了,在反复对照后,发现是因为在接入校正电路时忘了把秒十位和分个位之间的连线拿掉而造成的,因此,在接线时一定要注意把不要的多余的线拿掉。

仿真时用的脉冲是用的软件里的时钟脉冲,没有使用555定时器,可能会造成一定的误差。

四川工业科技学院数字电路课程设计

第5章 设计总结

通过这次数字电子钟的课程设计,我们把学到的东西与实践相结合,深化了我对数字电路设计和模拟电路的设计,让我在设计的实践中获得了更多的知识,同时锻炼了我的动手能力。在这过程中对我们学的知识了更进一步的理解,而且更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法,也锻炼了自己独立思考问题的能力和通过查看相关资料来解决问题的习惯。

虽然这只是一次学期末的课程设计,但通过这次课程设计我们了解了课设计的一般步骤、方法和设计中应注意的一些问题。我觉得这次设计是很有重要意义的,它锻炼了同学们对待问题时的态度和处理事情的能力,了解了各个芯片能够完成什么样的功能,使用芯片时应该注意那些要点,同一个电路可以用那些芯片实现,各个芯片实现同一个功能的区别。

总之,这次课程设计让我学到了好多东西,这种课程设计对一个大学生是非常重要的。在此我要感谢我同组的搭档蔡西!然后,非常感谢廖老师的耐心指导!

四川工业科技学院数字电路课程设计

参考文献

数字信号处理课程的改革与实践 篇7

数字信号处理课程涉及到的数学知识多、理论性强[1], 内容枯燥, 对于数学基础差的学生来说, 学习难度尤其大。因此很多高校对该课程进行了改革和建设, 取得了一些成绩[2,3]。有的利用MATLAB进行课堂演示和实验教学, 强调理论与实践的结合[4];有的在课程的教学内容、教学方式、实践教学和考核方式等方面进行改革与探索[5];有的让学生参与教学, 改革实验课的教学模式。针对大庆石油学院的培养目标, 课程组从教师队伍、教学内容、教学条件、教学方法与教学手段、实践教学等方面对数字信号处理进行了全方位的改革和建设, 建成了2009年度省级精品课程, 提升了电气信息类专业人才的培养质量。

一、确立课程改革目标

大庆石油学院人才培养目标为:培养德智体美全面发展、基础扎实、知识面宽、实践能力强和具有创新精神的高级应用型人才。结合学校培养目标, 本课程在灵活性、精度、再现性、稳定性等方面进行了深化, 主要教学内容分为基本理论、算法工具箱和专业应用三大部分。实践教学分为实验、课程设计、毕业设计三个环节。实验又分为必做实验、选做实验、开放性实验、设计型实验等, 突出了虚拟实验、嵌入式实验等。通过该课程的学习, 达到下列目标: (1) 为后续相关课学习奠定一个坚实的基础; (2) 构建大学生创新实验平台; (3) 为大学生研究和就业指明方向。本课程建设目标是要求学生了解数字信号处理的基本概念、特点, 学科概貌、应用及发展方向, 掌握数字信号处理的基本原理、基本方法和基本技术, 能够利用DTFT、DFT、FFT、ZT等基本理论进行信号谱分析, 熟悉数字系统的变换、实现和设计原理与方法, 为学生进一步学习后续课程打下良好的理论基础, 为学生从事数字信号处理方向的研究培养一定的技能。

二、加强教师队伍建设

采取多种措施加强教师队伍建设。目前, 学院课程建设组形成了一支由6人组成的师资队伍, 承担了通信工程、信息与计算科学、电子信息工程和电子科学与技术专业的数字信号处理课程的教学工作。其中, 博士后1人, 博士1人, 在读博士2人, 全部为硕士以上学历。教授3人、副教授1人, 高级职称占60%。年龄结构中, 40—50岁教师3人, 30—39岁教师3人。教学队伍中有2名校教学名师, 1名校教学质量优秀奖获得者。教授、副教授每年均为本科生上课, 参与辅导和实验工作, 得到了专家的肯定和学生的好评。

三、优化教学内容

(一) 优化知识模块顺序

本课程先讲述信号及其变换, 再讨论系统及其变换、实现和设计, 从而建立完整的数字信号与系统的概念。知识模块顺序如图1所示。

(二) 建立金融风暴冲击下的教学体系

国际金融风暴对高等教育的冲击暴露了高校的不少问题:如重理论轻应用, 漠视自身条件和实际需求, 人才培养规格雷同率居高不下, 导致毕业生供需结构性矛盾突出, 就业形势严峻, 学生的就业信心受到一定程度的打击。为此, 学院形成课程教学团队, 改变过去主讲老师一包到底的做法;课程团队不但从事课程的理论教学、实验教学, 而且关注、跟踪、分析、研究该课程对人才培养模式的影响。同时借助“数字化地球”、“数字化油田”建设与发展契机, 构建课程、教师与学生的信息化平台。充分调动学生自主学习的积极性, 使课程体现出开放性、交互性、共享性、自主性和协作性的特点。

(三) 将科研成果引入教学

将国家、省 (部) 级、市 (局) 级科技攻关课题的成果引入到教学中。如将省科技攻关项目“调频立体声16级软开关编 (解) 码器的设计与实现”的阶段成果———软开关编码器、滤波器引入到教学中, 使学生既熟悉了当前国家调频广播“村村通”的政策, 又熟悉了科研和设计过程, 还了解了数字信号处理的优势, 以及滤波的作用。此外, 在市科研项目“基于Linux嵌入式智能网络视频监控系统的开发与研究”取得阶段性成果后, 将视频压缩算法嵌入到微处理器中, 建立了视频压缩通信的前端平台, 丰富了创新实验室的内容。

(四) 注重教材建设

选用了程佩青编著清华大学出版社出版的《数字信号处理》教材。该教材是一本吸收了国内外先进数字信号处理技术的比较成熟的教科书, 既有利于学生夯实基础, 又利于拓宽知识面。使用本教材, 学生能够较全面地掌握数字信号处理的基本概念、基本理论、基本分析方法和综合技能。选用了配套教材程佩青编著的《数字信号处理教程习题分析与解答》。为了使本课程向双语教学过渡, 还自编了英文版教材《Digital Signal Processing Theory, Algorithm and Applications》。

(五) 完善实践教学环境

在实践教学方面, 拥有国家和地方共建的LABVIEW开放式实验室, 拥有数字信号处理实验环境, 开设了音频视频软、硬件实验, 开发了综合性和设计性实验。结合教学大纲, 编写了《数字信号处理实验指导书》, 既有必做实验, 又有选做实验和设计性的实验, 提高了学生的实践与设计能力。

基于MATLAB语言开发了与教材配套的仿真试验, 既实现了数值计算的可视化, 又巩固了MAT-LAB语言课程内容。基于LABVIEW开发了网络化虚拟实验室, 使学生可以自主地选择时间和地点进入本实验室完成选修实验。这样学生既认识了虚拟实验室这一新的实验环境, 又激发了探索和创新的兴趣。

便携式DSP系列嵌入式实验系统适应了移动计算通信的发展的需求, 为学生提前进入毕业设计状态奠定了基础, 从学生的选题可以看出, 基于DSP的信号处理较受欢迎。

(六) 开发网络教学环境

建立了精品课网站, 拥有丰富的网络资源, 如数字信号处理网络讲稿、电子课件和试题库等, 开发了数字信号处理虚拟实验室, 实现了网络在线答疑系统, 加强了教与学的信息交流。

四、改革教学方法

(一) 延续信号与系统主线教学方法

鉴于学生刚刚学过信号与系统, 且该课是校级精品课, 为此, 数字信号处理课程的教学体系仍然沿用信号与系统主线, 其内容按照数字信号与系统划分为两条副线, 保持了通信工程专业知识体系的完整性, 教学方法的连续性, 教学手段的熟练性。

(二) 开展集中教学、分散教学和普适教学

结合课程结构和发展趋势, 开展集中教学、分散教学和普适教学, 并实现三种教学方法的有机合成。同时, 利用网络课堂, 开发虚拟课堂, 强化大学生实验创新能力, 提高教学质量。

(三) 注重该课程与后续课程的结合

课程的连续性有助于知识结构系统性的形成, 如在帕塞瓦尔定理讲解中, 指出其是功率谱估计的基础, 且符合能量守恒原理;在讲解卷积和相关时, 提出卷积是线性系统的重要成果, 是本课程的重点, 而相关是信号分离的基础;在讲解DFT与ZT的关系时, 指出前者是对后者的均匀采样, 如果作窄带分析或时频分析的话, 还有许多其他的方法, 为综合课程设计和毕业设计埋下了伏笔, 使学生用辩证发展的思维看待基础课程中知识的学习, 形成发散性思维, 培养了学生的探索兴趣和开发能力。

四、改革实验教学内容

(一) 精选课内实验

数字信号处理课程的课内实验为8个学时, 为此开设了四个必做实验:一个是教材重点的DFT理论验证, 一个是教材难点的谱分析, 另外两个实验为设计性实验, 对应的是教材的重点和难点:IIR和FIR滤波器设计。

(二) 增设开放型实验

配备了DSP微处理器2000、5000、6000实验箱, 利用便携、组件的特点, 既可以由教师在课堂上通过多媒体教学环境演示课程内容与实验结果, 又可以由学生借走利用业余时间开发, 还可以组成开发小组在实验室集体开发, 为学生认识、了解、利用DSP技术提供了保障。

(三) 构建虚拟实验平台

借助中央与地方共建的Lab VIEW实验室, 配合ELVIS硬件平台、PCI-6013数据采集卡等, 构建了数字信号处理虚拟实验室, 为学生提供了丰富的数字信号处理环境, 且减少了实验器件的损耗, 配置灵活, 且扩展性好, 开发周期短。

本课程的实践环节延续到毕业前的综合课程设计、毕业设计, 实现了理论学习向实验技能、创新研究的转变。

经过多年来数字信号处理课程的改革与实践, 培养了一支优秀的专业化课程团队, 课程组教师积极探索教学方法, 改革教学内容, 用现代化手段教学, 取得了良好的教学效果, 专家、同行、学生评价优秀。

参考文献

[1]杨鉴等“.数字信号处理”精品课程建设的几点体会[J].中国电子教育, 2008, (4) .

[2]刘会衡, 田玲.数字信号处理课程教学方法改革与实践[J].教学研究, 2008, (3) .

[3]聂小燕, 鲁才.数字信号处理教学改革的探索[J].实验科学与技术, 2008, (6) .

[4]高永清, 商丹, 杜丽娟“.数字信号处理”课程教学改革与探索[J].中国电力教育, 2009, (3) .

数字信号处理课程教学方法探讨 篇8

关键词:数字信号处理;电子信息科学与技术;教学内容;实验教学

中图分类号:TN911.72 文献标识码:A 文章编号:1674-7712 (2012) 14-0176-01

随着大规模集成电路以及DSP芯片的广泛应用,数字信号处理在通信、嵌入式系统、自动控制、生物医学等方面得到越来越广泛的应用。数字信号处理课程本身也是部分高校研究生入学考试的专业基础课。本文就数字信号处理课程的课程特点、教材选择以及实验教学等方面,对该课程进行了教学改革探讨。

一、课程教学特点

数字信号处理课程的先修课程有高等数学、复变函数、模拟电路、数字逻辑电路、信号与线性系统,其特点为数学理论性强,滤波器结构以及算法复杂多样。因此,学生在有限的教学时间内不容易掌握。此外,学生先修课程基础的差异也给教学带来了一定的困难。

二、教材选择的改变

基于河南工业大学电子信息科学与技术专业的培养方向偏电路和控制的特点,在教材选择上特别注重了教材的应用性。为此,选用的教材是清华大学出版社姚天任主编的《数字信号处理》,该教材是2011年底出版的新教材,有精装版和简明版两种。其中,精装版中增添了多速率滤波器的设计,这是其他本科教材中所没有的。该教材最大的特色是把MATLAB应用到了教材中,更加重视知识的应用性,既有MATLAB的相关例题,又有与之对应的课后习题,这样更加方便同学们进行实验。

三、教学时间调整和内容安排的优化

本课程包含两大块知识内容。一是离散信号的时、频域分析,主要包括离散系统的时域分析、Z变换、DFT、FFT;二是数字滤波器的结构以及设计,包括FIR滤波器和IIR滤波器的结构、FIR滤波器的设计、IIR滤波器的设计。教材中最后一章的多速率数字信号处理是本科教学中的新内容,可以让同学们自学。

河南工业大学的信号与系统课程在大二下学期开设,数字信号处理在大三上学期开设,间隔的时间很短。因此在数字信号处理的教学时间安排上,第一章的离散时间信号和离散时间系统不再作详细介绍,可以用一次课的时间简单复习一下,这样可以把更多的教学时间安排在后面的章节中。特别是DFT的特殊算法FFT以及滤波器的结构和设计方法这些较难的、学生以前没有学过的内容,可以重点讲述。由于教材直接引入了实验环节,对于DFT、FFT可以相较之以前用更少的时间去讲述,只讲述它们的一些经典算法结构,同学们可以在实验学时里去进一步加强,因为这些算法本身都是经典算法,有成熟的流程和代码,这样可以把更多的学时留给后面的滤波器结构和设计。所选用的教材正好符合这一思路,FFT不再单列一章出来专门讲述,而是作为一节放在DFT的那一章中。

四、教学手段的改革

数字信号处理课程具有很强的理论性和应用性,为了更加方便同学们的学习,我们使用了具有动态效果的幻灯片,另外,还加入了一些具有图片形式的辅助资料。例如,通过对FIR、IIR滤波器的基本概念、特点、理的介绍以及如何在实际应用中进行选择,对于初学者的学习,起到了较好的效果。

在概论中讲述数字信号处理的内容、发展和应用时,结合图片或者动画,增强了学生的兴趣和学习的主动性。比如在介绍其在芯片方面的应用时,可以通过图片以及动画介绍各种不同的DSP芯片的特点,让同学们对数字信号处理这门课程的应用有一个更加直观的认识;当然还在图像处理、图像滤波等方面、自动控制等方面进行了图片或者动画的示例,收到了良好的效果。

五、利用Matlab实验来辅助教学

在课堂上适量引入MATLAB例程,既增加了对本课程学习的兴趣,又加深了对教材内容的理解,还可以有效的引导学生们的实验。MATLAB语言比较简单易学,里面自带了好几十种的工具箱,我们专业要用到里面的数值运算、信号处理等工具箱,每种工具箱有大量的库函数供我们调用,这样在编程时就省去了很大的工作量。例如进行DFT、FFT、求解差分方程时一个函数调用,一句话就完成了。因此,利用它可以很方面的求解系统,得到系统的频响特性。在教学中,通过MATLAB示例,可以对着图形分析,可以让同学们更加直接的地识信号的频谱和系统特性。

六、结束语

本文在数字信号处理课程的教学特点、教材选择、教学实践安排、实验教学等几个方面对该课程的教改进行了探讨,一方面丰富了教学内容,另一方面激发了同学的学习兴趣和学习主动性,收到了良好的效果。

参考文献:

[1]姚天任.数字信号处理[M].清华大学出版社.

[2]高西全.多媒体教学的地位与作用[J].西安电子科技大学学报社科版.

[3]吴镇扬.数字信号处理[M].高等教育出版社.

上一篇:绩效感言下一篇:增城市小楼镇中心小学防邪教工作制度