几何操作证明题

2024-07-08

几何操作证明题(通用11篇)

几何操作证明题 篇1

(2)若BE是△ADF的中位线,且BE+FB=6厘米,求DC+AD+AB的长.

CA

5B

F

已知E为平行四边形ABCD中DC边的延长线的一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,求证:AB=2OF.A

O

D

G

当代数式x+3x+5的值为7时,代数式3x+9x-2的值是_________.

2B

FE

24如图所示,△ABC中,∠BCA=90°,D、E分别是AC、AB的中点,F在BC的延长线上,∠CDF=∠A,求证:四边形DECF是平行四边形

F C

E

B

D C

E

(第24题)

A

25如图,在△ABC中,ACB90,CD⊥AB于D,AE评分∠BAC交CD于F,EG⊥AB 于G.求证:四边形CEGF是菱形.(第25题)

24.阅读下面的题目及分析过程,并按要求进行证明.

已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD

分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.

25.如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN、MC交于点E, 直线BM、NC交于点F。(1)求证:AN=BM;

(2)求证: △CEF为等边三角形;

(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).七、24.选择第(1)种。证明:延长DE到点F,使EF=DE;∵点E是BC中点;∴BE=CE;又∵∠BEF=∠CED(对顶角相等);∴△BEF≌△CED(SAS);∴BF=CD,∠ F=∠CDE;又∵∠BAE=∠CDE;∴∠BAE=∠F;∴BF=AB;∴AB=CD。

八、25.(1)证明:∵△ACM、△CBN是等边三角形;∴AC=MC,BC=NC, ∠ACM=60°,∠BCN=60°;∴∠MCN=180°-60°-60°=60°;∴∠ACN=∠ACM +∠MCN =60°+60°=120°, ∠BCM=∠BCN +∠MCN =60°+60°=120°;∴∠ACN=∠BCM;∴△ACN≌△MCB(SAS);∴AN=BM.(2)证明:∵△ACN≌△MCB;∴∠ANC=∠MBC;又∵∠MCN=∠BCN=60°, BC=NC;∴△ECN≌△FCB(AAS);∴EC=FC;又∵∠MCN=60°;∴△CEF为等边三角形。(3)补全图形如下:

第(1)小题的结论还成立,但第(2)小题的结论不成立。

24.(本小题10分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:

7

xy

设所求矩形的两边分别是x和y,由题意得方程组:

2xy3,消去y化简得:2x27x60,∵△=49-48>0,∴x1,x2 . ∴满足要求的矩形B存在.

(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.

(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?

25.已知菱形ABCD的周长为20cm;,对角线AC + BD =14cm,求AC、BD的长; 26如图,在⊿ABC中,∠BAC =90,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形; A

C

E

GD

F

B

27.如图,正方形ABCD中,过D做DE∥AC,∠ACE =30,CE交AD于点F,求证:AE = AF;AB

CDF已知:正方形ABCD,E为BC延长线上一点,AE交BD于F,交DC于G,M为GE中点,求证:CF⊥CM

AD

M

BC

E

2.如图,AD是△ABC的角平分线,AD的中垂线分别交AB、BC的延长线于点F、E求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.3.如图,△ABC中,∠ACB=90°,D为AB中点,四边形BCED为平行四边形.,DE、AC相交于点F.求证:(1)点F为AC中点;

(2)试确定四边形ADCE的形状,并说明理由;

(3)若四边形ADCE为正方形,△ABC应添加什么条件,并证明你的结论

B D C E

E

BC

4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE。

(1)求证:四边形ACEF是平行四边形;

(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;

(3)四边形ACEF有可能是正方形吗?为什么?

F

E

B

D

AC

D

AC

B用关系式.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45º。翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点F、30E。若AD=2,BC=8,求:(1)BE的长。(2)CD:DE的值。

四、读句画图,并证明

22.已知点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF。

求证:DE=BF。

23.已知在⊿ABC中,∠BAC=90º,延长BA到点D,使AD=

2AB,点E、F分别为边BC、AC的中点。(1)求证:DF=BE。(2)过点A作AG∥BC,交DF于点G,求证:AG=DG。

五、论证题

24.如图,在等腰直角⊿ABC中,O是斜边AC的中点,P是斜边AC

A

O

E

B

D

C

上的一个动点,D为BC上的一点,且PB=PD,DE⊥AC,垂足为E。(1)试论证PE与BO的位置关系和大小关系。

(2)设AC=2a , AP=x , 四边形PBDE的面积为y , 试写出y与x

之间的函数关系式,并写出自变量x的取值范围。

25.如图,梯形ABCD,AB∥CD,AD=DC=CB,AE、BC的延长线相交于点G,CE⊥AG于E,CF⊥AB于F。

(1)请写出图中4组相等的线段(已知的相等线段除外)。

(2)选择(1)中你所写出的一组相等线段,说明它们相等的理由。

六、观察——度量——证明

26.用两个全等的等边三角形⊿ABC、⊿ACD拼成菱形ABCD。把一个含60º角的三角尺

与这个菱形叠合,使三角尺的60º角的顶点与点A重合,两边分别与AB、AC重合。将三角尺绕点A按逆时针方向旋转。

(1)当三角尺的两边分别与菱形的两边BC、CD相交于点E、F时(如图1),通过观察或测量BE、CF的长度,你能得出什么结论?并证明你的结论。(2)当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由。

B

EC

B

CE图2

ED

C

A

F

B

D

A

几何操作证明题 篇2

中学数学新课标将原初中平面几何中的部分内容, 移到高中作为选讲内容.其中有些是现行初中课标教材删减的内容, 如:直角三角形中的射影定理, 圆的弦切角、相交弦、切割线定理.查阅2009年实施课标高考的各省平面几何选作题, 发现初中生也都能做.

例1 (2009年广东文) 如图1, 点A、B、C是圆O上的点, 且AB=4, ∠ACB=30°, 则圆O的面积等于__.

解法1: (利用圆周角与圆心角的关系) 连结OA、OB, 因为∠ACB=30°, 所以∠AOB=60°, △AOB为等边三角形.因此圆O半径 r=OB=AB=4, 从而圆O的面积S=πr2=16π.

解法2: (用三角形中的正弦定理) 设△ABC外接圆圆O半径为 r, 则由正弦定理有

2r=ABsinACB=4sin30°=8,

得 r=4.故圆O面积S=πr2=16π.

例2 (2009年广东理) 如图2, 点A、B、C是圆O上的点, 且AB=4, ∠ACB=45°, 则圆O的面积等于__.

简析:可参考例1的两种解法, 求得圆O的半径r=22, 则圆O面积为8π.

点评:以上两例, 在初中平面几何中也属于基本题.可见高考题中的题目也有简单题, 甚至连初中生也很容易做出.

例3 (2009年江苏卷) 如图3, 在四边形ABCD中, △ABC≌△BAD.求证:AB//CD.

证明1:由△ABC≌△BAD, 得∠ACB=∠BDA, 则A、B、C、D四点共圆, 因而∠CAB=∠CDB.

再由△ABC≌△BAD, 又得∠CAB=∠DBA.

所以∠CDB=∠DBA, 从而AB//CD.

证明2:同上证得A、B、C、D四点共圆, 得∠ADC+∠ABC=180°.

又由全等三角形得∠DAB=∠ABC,

则∠ADC+∠DAB=180°, 所以AB//CD.

点评:证明1和证明2的关键是利用了四点共圆, 则同弧所对的圆周角相等.再由内错角或同旁内角的方法证得两线平行.实际上, 本例还有多种证法, 如分别由两个全等三角形的顶点C、D作底边AB上的高, 由高相等, 立得结论;又如过对角线的交点作AB的垂线, 可证四边形关于这条垂线成轴对称.

例4 (2009年宁夏海南) 如图4, 已知△ABC的两条角平分线AD和CE相交于H, ∠B=60°, F在AC上, 且AE=AF. (1) 证明:B、D、H、E四点共圆; (2) 证明:CE平分∠DEF.

证明: (1) 在△ABC中, 由∠B=60°, 知

∠BAC+∠ACB=120°.

又AD、CE是角平分线, 所以∠HAC+∠ACH=60°, 则∠AHC=120°.

于是∠EHD=∠AHC=120°.

因为∠EHD+∠B=180°, 所以B、D、H、E四点共圆.

(2) 由B、D、H、E四点共圆, 得∠AHE=∠B=60°.

再连结BH, 知BH平分∠B, 则

∠HED=∠HBD=30°.

又由AE=AF, AH平分∠EAF, 得AH⊥EF, 则∠HEF=30°.

可见∠HED=∠HEF=30°, 所以CE平分∠DEF.

点评:对于 (1) 小题, 也可利用三角形的外角关系来证∠BDH+∠BEH=180°.另外, (1) 小题的结论为 (2) 小题的证明提供了重要条件, 这是系列问中常见的情形.应注意在解证后一小题时, 不要忽视前一小题的结论.

例5 (2009年辽宁省) 如图5, 已知△ABC中, AB=AC, D是△ABC外接圆劣弧AC上的点 (不与点A, C重合) , 延长BD至E. (1) 求证:AD的延长线平分∠CDE; (2) 若∠BAC=30°, △ABC中BC边上的高为2+3, 求△ABC外接圆的面积.

解: (1) 由条件知ABCD是圆内接四边形, 则∠CDF=∠ABC, ∠EDF=∠ADB=∠ACB.

又AB=AC, 知∠ABC=∠ACB, 故∠CDF=∠EDF, 从而AD的延长线DF平分∠CDE.

(2) 如图6, 设△ABC外接圆的圆心为O, 连结AO并延长交BC于H.由AB=AC, 知AH⊥BC.连结OC, 则∠OCA=∠OAC=15°.又∠ACB=75°, 则∠OCH=60°.设圆半径为 r, 则ΟΗ=32r.由r+32r=2+3, 得 r=2.从而外接圆面积为4π.

评析:上述各例都与圆有关.这是因为圆可与全等三角形, 相似三角形, 四边形等知识交汇, 构建成综合性较强的试题, 从而能较全面地考查学生分析探究、综合归纳、逻辑推理能力.下面一组高考题供研习.

1. (2008年广东) 已知PA是圆O的切线, 切点为A, PA=2, AC是圆O的直径, PC与圆O交于点B, PB=1, 则圆O的半径R=__.

2. (2008年宁夏、海南) 如图7, 过圆O外一点M作它的一条切线, 切点为A, 过点A作直线AP垂直直线OM, 垂足为P. (1) 证明:OM·OP=OA2; (2) N为线段AP上一点, 直线NB垂直直线ON, 且交圆O于点B.过点B的切线交直线ON于K.证明:∠OKM=90°.

3. (2008年江苏) 如图8, 设△ABC的外接圆的切线AE与BC的延长线交于点E, ∠BAC的平分线与BC交于点D.求证:ED2=EC·EB.

4. (2007年广东) 如图9, 圆O的直径AB=6, C为圆周上一点, BC=3.过C作圆的切线 l, 过A作 l 的垂线AD, AD分别与直线 l、圆交于点D、E, 则∠DAC=__, 线段AE的长为__.

5. (2007年宁夏、海南) 如图10, 已知AP是⊙O的切线, P为切点, AC是⊙O的割线, 与⊙O交于B、C两点, 圆心O在∠PAC内部, 点M是BC的中点. (1) 证明A, P, O, M四点共圆; (2) 求∠OAM+∠APM的大小.

练习题提示与答案:

1.连AB, 用特殊直角三角形;也可用切割线定理.答:3.

2.用直角三角形中射影定理.

3.用切割线定理.

4.用Rt△AEB≌Rt△BAC, 30°, 3.

5. (1) 连OP、OM, 用对角互补; (2) 90°.

一道几何证明题思路剖析 篇3

从命题者提供答案看,是由条件BA=BA′联想到等腰三角形,进而想到证明BD为底边AA′的高,思路是顺畅的,也无可厚非,但证明用了3次三角形相似,显然超过了课程标准要求.这促使笔者深思、细研,思索着有没有其它解法?

解题是由条件出发,运用已有定义、定理、法则,通过运算、推理得到结论的过程.因此,题干条件是什么、能得到什么结论、需要什么条件、条件与结论之间用什么方法打通、有哪些思路,这是解题者必须思考的问题.那么该题有其它通性通法吗?

结合本题,结论是证明D为AA′的中点,那么,遇到中点问题(已知中点或证明中点)我们还可以想到什么呢?从另一角度考虑,是否可以构造“8”字型或“A”字型或其他思路,这难道不是通性通法呢?

3解题反思

3.1关注解题通法,增强学生的解题能力

优秀的几何题一般存在多种解法,而辅助线通常是解决问题的桥梁,巧妙的辅助线常能“柳暗花明又一村”,与标准答案不同的上述几种解法,其巧妙之处在于添加了辅助线,辅助线使未知与已知有了更紧密的联系,无需通过证明3次相似,证明过程大为简洁,体现了数学方法的多样性,同时也从侧面说明这是一道难得的好题,是训练学生数学思维的好素材.由此可见,通过一题多解,可以加深和巩固学生所学知识,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识横向和纵向的内在联系,掌握各部分知识的转化关系,从而达到培养思维广阔性的目的.

3.2重视学会解题,拓展学生的思维空间

在解题教学中,题目是载体,解题是过程,方法和规律的揭示、策略和思想的形成是目的,因此,解题教学切忌就题论题,片面追求容量,忽视教学功能的发掘、开发.引导学生学会解题层面的回顾与反思:如解题中用到了哪些知识?解题中用到了哪些方法?这些知识和方法是怎样联系起来的?自己是怎么想到它们的?困难在哪里?关键是什么?遇到什么障碍?后来是怎么解决的?是否还有别的解决方法、更一般的方法或更特殊的方法、沟通其他学科的方法、更简单的方法?同样的方法能用来处理更一般性的命题吗?命题能够推广吗?条件能减弱吗?结论能加强吗?这些方法体现了什么样的数学思想?调动这些知识和方法体现了什么样的解题策略?

3.3关注模型思想,强化学生的识模能力

拿到一道试题,在理解题意后,立即思考问题属于哪一主题、哪一章节?与这一章节的哪个类型的问题比较接近?解决这个类型的问题有哪些方法?哪个方法可以首先拿来试用?这一想,下手的地方就有了,前进的方向也大体确定了,这就是解题中的模式识别.运用模式识别可以简洁回答解题中的两个基本问题,从何处下手?向何方前进?我们说就从辨认题型模式入手,向着提取相应方法、使用相应方法解题的方向前进.正如本文中所提到的构造“A字型”、“8字型”或“共点双垂直型”等基本模型,因此在平时的教学中,教师要引导学生从习题中提炼出常用的基本模型,再推广模型,并通过典型问题帮助学生认识模、用模,从而强化学生对基本模型的理解.

参考文献

[1]钱德春.对数学解题“繁”与“简”的辨析与思考[J].中学数学杂志,2015

(10):17-21

[2]沈岳夫.对一道“新定义”型折叠题的解法探析[J].数理化学习(初中版),2015(11):2-3

几何证明题练习 篇4

1.如图1,Rt△ABC中AB = AC,点D、E是线段AC上两动点,且AD = EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得5分。

①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形; ②点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2)。

附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。

E

A

AM

AMD

D

F

E

F

A

F

K

C

AD

D

F

A

EEC

图 16

C

N

B

图 1

5B

MF

MF

图 17

D

C

图 17

图 16图 15

2.(1)如图13-1,操作:把正方形CGEF的对角线 CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M。

探究:线段MD、MF的关系,并加以证明。说明:(1)如果你经历反复探索,没有找到解决问题 A 的方法,请你把探索过程中的某种思路写出来(要求 至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得 7分;选取③完成证明得5分。

① DM的延长线交CE于点N,且AD=NE; A ② 将正方形CGEF绕点C逆时针旋转45°(如图13-2),其他条件不变;③在②的条件下且CF=2AD。(2):将正方形CGEF绕点C旋转任意角度后

(如图13-

3),其他条件不变。探究:线段MD、MF的关系,并加以证明。

D

F

E

13-2 D

图13-

33.如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx.MN的形状是否发生改变?若不变,①当点N在线段AD上时(如图2),△P求出△PMN的周长;若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.N

A A A D D D B

图1 A B

D F C

B

F C

B

M

2F C B

N

F

C

M 图3 D F C

(第3题)A

图5(备用)图4(备用)

4.如图4,△P1OA1,△P2A1A2,△P3A2A3……△PnAn-1An都是等腰直角三角形,点P1、P2、P3……

Pn都在函数y

(x > 0)的图象上,斜边OA1、A1A2、A2A3……An-1An都在x轴上。x

⑴求A1、A2点的坐标;

⑵猜想An点的坐标(直接写出结果即可)

图 1

55.如图5-1,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系。

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写

3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得5分。①画出将△ACM绕某一点顺时针旋转180°后的图形; ②∠BAC = 90°(如图17)

附加题:如图5-3,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系。

E

E

AM图 17

C

D

图 18

EC

D

A

D

M图 16

6.O点是△ABC所在平面内一动点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,如果DEFG能构成四边形.

(1)如图,当O点在△ABC内时,求证四边形DEFG是平行四边形.(2)当O点移动到△ABC外时,(1)的结论是否成立?画出图形并说明理由.(3)若四边形DEFG为矩形,O点所在位置应满足什么条件?试说明理由.

A

B

7.如图,已知三角形ABD为⊙O内接正三角形,C为弧BD上任意一点,已知AC=a,求S四边形ABCD。

D到直线l的距B、C、8.如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、离分别为a、b、c、d.

(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.

9.10.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC的中点M,连结DM和BM.

(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,探索BM、DM的关系并给予证明;

(2)如果将图①中的△ADE绕点A逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.

B

A

D C

A

图②

C

图①

11.如图(1)在Rt△ABC中,∠BAC=90°,AB = AC,点D、E分别为线段BC上两动点,若∠DAE=45°.(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.ABC60,12.(北京市石景山中考模拟试题)(1)如图1,四边形ABCD中,ABCB,ADC120,请你 猜想线段DA、DC之和与线段BD的数量关系,并证明你的结论;

(2)如图2,四边形ABCD中,ABBC,ABC60,若点P为四边形ABCD内一点,且APD120,请你猜想线段PA、PD、PC之和与线段BD的数量关系,并证明你的结论.

第12题图1 图2 13.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC

相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的 数量关系?试证明你的猜想;

(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的 取值范围;

(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所

有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由..B

QC

A

P

初二几何证明题 篇5

求证:角EMD=2角DAC

证明:

∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA

∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA

∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC

2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D

求证:∠AHE=∠BGE

证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:

∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点

∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF

∵FM‖BG,∴∠MFE=∠BGF

∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题

这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受

如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC

证明:

BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)

==>BE=AB*BC/(BC+AC)

同理:CD=AC*BC/(BC+AB)

假设AB≠AC,不妨设AB>AC.....(*)

AB>AC==>BC+ACAC*BC

==>AB*AB/(BC+AC)>AC*BC/(BC+AB)

==>BE>CD

AB>AC==>∠ACB>∠ABC

∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/

2==>∠BEC>∠BDC

过B作CE平行线,过C作AB平行线,交于F,连DF

则BECF为平行四边形==>∠BFC=∠BEC>∠BDC.....(1)

BF=CE=BD==>∠BDF=∠BFD

CF=BE>CD==>∠CDF>∠CFD

==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC...(2)

(1)(2)矛盾,从而假设(*)不成立

所以AB=AC。

2、两地角的平分线相等,为等腰三角形

作三角形ABC,CD,BE为角C,B的角平分线,交于AB,BE.两平分线交点为O

连结DE,即DE平行BC,所以三角形DOC与COB相似。

有DO/DC=EO/EB,又EB=DC所以DO=EO,三角形COB为等腰

又角ODE=OCB=OED=OBC

初中几何证明题 篇6

初中几何证明题

己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。

求证:BD+CE≥DE。

1.

延长EM至F,使MF=EM,连BF.

∵BM=CM,∠BMF=∠CME,

∴△BFM≌△CEM(SAS),

∴BF=CE,

又DM⊥EM,MF=EM,

∴DE=DF

而∠DBF=∠ABC+∠MBF=∠ABC+∠ACB<180°,

∴BD+BF>DF,

∴BD+CE>DE。

2.

己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。

求证:BD+CE≥DE

如图

过点C作AB的平行线,交DM的延长线于点F;连接EF

因为CF//AB

所以,∠B=∠FCM

已知M为BC中点,所以BM=CM

又,∠BMD=∠CMF

所以,△BMD≌△CMF(ASA)

所以,BD=CF

那么,BD+CE=CF+CE……………………………………………(1)

且,DM=FM

而,EM⊥DM

所以,EM为线段DF的中垂线

所以,DE=EF

在△CEF中,很明显有CE+CF>EF………………………………(2)

所以,BD+CE>DE

当点D与点B重合,或者点E与点C重合时,仍然采用上述方法,可以得到BD+CE=DE

综上就有:BD+CE≥DE。

3.

证明 因为∠DME=90°,∠BMD<90°,过M作∠BMD=∠FMD,则∠CME=∠FME。

截取BF=BC/2=BM=CM。连结DF,EF。

易证△BMD≌△FMD,△CME≌△FME

所以BD=DF,CE=EF。

在△DFE中,DF+EF≥DE,即BD+CE≥DE。

当F点落在DE时取等号。

另证

延长EM到F使MF=ME,连结DF,BF。

∵MB=MC,∠BMF=∠CME,

∴△MBF≌△MCE,∴BF=CE,DF=DE,

在三角形BDF中,BD+BF≥DF,

即BD+CE≥DE。

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的`方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

几何操作证明题 篇7

例1根据已知图 (1—1) 证明∠D与∠A+∠B+∠C的关系。

分析:此题以原图证明是难以找到证题的依据, 必须通过添加辅助线才能有充分的理由得出结论, 又有的图有多种添加法, 由于添加辅助线的位置不同, 证明的方法也不同。

(1) 请看图 (1—2) 是连接AD到E, 这样就把原图分成△ADB和△ADC两个三角形, 两个三角形都有一个外角, 分别为∠BDE和∠CDE, 这就根据三角形的外角定理 (三角形的一个外角等于它不相邻的两个内角之和) 得出结论:∠D=∠A+∠B+∠C

证明:链接AD延长AD至E, AE用虚线表示。

∵∠BDE是△ABD的一个外角

同理可证:∠CDE=∠ACD+∠CAD

(2) 再请看图 (1—3) 是延长CD到E, 又把图分成不同的两个三角形, 原来的∠D为△BDE的一个外角, ∠DEB又为△AEC的一个外角。即, ∠BDC=∠DEB+∠B∠DEB=∠A+∠C原题得证。

延长BD到E图 (1—4) 同理可证。

(2) 最后如图 (1—5) 连接BC, 把原图改变成△ABC和△DBC两个三角形, 根据三角形内角的定理 (三内角之和为180°) 。△ABC=180°, △DBC=180°得∠BDC=∠ABD+∠ACD+∠A即原题得证。

例2已知图是等腰直角三角形, 线段AD平分∠A, 求证AB=AC+CD。

分析:仅凭此图看也是难找到与要证题的恰当条件, 必须通过添加辅助线才能找到证题的依据。

请看图 (2—2) 经过点D作底边AB的垂线, 垂足为E, 这样就把△ADB分成△BDE和△AED两个三角形。这就可证△ACD与△AED全等, 得AC=AE, 又可证DE=BE=CD, 即原题得证AB=AC+CD.

证明:略。

例3已知图 (3—1) 三角形为等腰直角三角形, 且直角边为4厘米, 求阴影部分的面积。

分析:此题只凭已知求阴影部分的面积, 似乎分散且孤立, 如果经B作AC边的垂线, 且把原三角形内的阴影部分平分为二, 阴影1的面积与阴影3的面积相等, 阴影2的面积与阴影4的面积相等, 这就把所有阴影部分面积聚集成一个扇形, 所求阴影部分的面积等于扇形面积减去三角形的面积。

计算:略

小结:通过以上三例分析, 添加辅助线证明几何题主要是帮助过度思考, 其具体作用有以下三点。

1、搭桥过河, 即创造新的等量关系, 使要证的等量与不等量之间有一个媒介因素。

2、分散集聚, 通过添置恰当的辅助线, 将图形中分散、远离的元素, 通过变换和转化, 使他们相对集中, 聚集到有关图形上来, 使题设条件与结论建立逻辑关系, 从而推导出要求的结论。

3、显示隐含:当条件与结论间的逻辑关系不明显时, 通过添加辅助线, 将条件中隐含的有关图形的性质充分揭示出来, 以便取得过渡性的推理, 达到推导出结论。

浅议几何证明题教学策略 篇8

关键词:初中数学;几何证明题;提高质效

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)18-084-01

提及初中数学几何证明题,不少学生就头皮发麻,找不到思路,面对各种各样的图形和线条就犯晕,几乎束手无策,更不用说作出精确的辅助线了;有的学生则是风风火火地写了满满一张纸,仔细一看,逻辑混乱,不知所云;还有的学生步骤简单,跳跃幅度大,因果关系没有整理清晰,关键步骤没有写清楚便匆匆得到要证明的结论,多多少少有些滥竽充数的嫌疑,自然也就拿不到证明题的完整分数了。对于数学教师来讲,初中几何证明题也是教学上的一大难点,似乎在教学中花了不少的力气,但还是有不少的学生对几何证明题的掌握程度无法令人满意,达不到新一轮课程改革的基本要求。如何针对初中数学几何证明题的特点,调动学生的主观能动性,提高几何证明题的教学效果,我结合个人教学实际,谈几点粗浅看法。

一、尊重教材

蘇教版初中数学几何教材中,有几个重点环节,如平行线、轴对称图形、中心对称图形、相似图形等,这些章节的知识几乎无一例外都有证明题可供考查。与这些知识点相关的证明题,一般来说难度不小,对于刚刚接触几何知识的初中生来讲,是一个很大的挑战。要抓好这部分证明题的教学,我认为首先就是要尊重教材。

教材是一切教学工作的根源。教材中有很多经典的例题,这些例题几乎可以涵盖初中几何所有的知识点,可以说,把教材上的例题讲通讲透,学生能完全消化教材的例题,应该说学生就可以解决百分之八十的基本证明题。现实状况下,有些几何教师对证明题的讲解存在认识的误区,认为没有什么值得仔细讲、反复讲的,尽快讲完直接进入课后练习。这种教学方式是不科学的,也是不合理的,我认为教材上的例题,至少要到边到角地讲三遍,每一遍都有不同的任务,第一遍是让学生大致了解题目要求证明的结论和题目提供的条件;第二遍是让学生明白如何通过给定的条件和现有的定理逐步得到要证明的结论,第三遍则是让学生做好细节上的处理工作。

二、做好细节的规范书写

初中几何证明题有着严谨的格式要求,证明题的书写还需要思路明确、步骤清晰、过程精练,这样的证明过程才能得到更高的评价。教学实际中,通常遇到学生证明步骤烦琐,证明格式不规范,箭头指来指去,看得头晕眼花,不少数学老师对此大为光火。其实,更多的时候,我们要反思自己在教学中是否做得到位,做得细心。

有的数学教师对于证明题示例的细节上把握不够,他们认为只要我能把证明思路、关键的步骤给学生演示一下就够了,至于其他的地方,没有必要过于苛求。比如在板书的过程中,有的为了赶进度,图简单省事,一些看似不重要的证明步骤一笔带过,有的书写不够规范,有的字迹过于潦草,黑板上箭头指来指去,如同一幅军事作战指挥图,学生看起来很累,也很容易产生歧义。

如果教师是这种教学心态,那么也无法搞好几何证明题教学工作的,首先几何证明题本身就是一个严谨、严密的逻辑推理过程,没有做好细节自然就漏洞百出,所以,要充分认识到细节的重要性,为学生做好细节示范。其次,学高为师,身正为范,这也是对教师教学工作的一个基本要求。如果教学时间不是很充足,宁愿放弃示范也不能匆匆了事,一定要把握细节,注意火候,只有我们自己做得足够好,才能理直气壮对学生提要求。

三、抓好强化训练

初中几何证明题的教学,离不开强化训练。这种强化训练既要训练学生的逻辑思维,还要训练学生的答题规范性。比如,在三角形、多边形和圆这些章节的几何证明题中,有不少的题目要求学生作辅助线,不然难以解答。

要能准确作出辅助线,并熟练地运用各种定理来证明几何题,就需要平时进行一定量的强化训练。这种强化训练一定不能走入了题海的误区,训练的题目最好是由老师提前把关,量不能太大、太复杂让学生产生畏难的心理,也不能过于简单,我认为以书本上的例题为参考,适当提高点难度为宜。比如,我们可以在一堂课专门训练如何作辅助线,只要作出了辅助线,我们不要求学生完完整整地书写出整个证明过程,但要注意作出辅助线后续的工作,防止学生误打误撞,只要求他们说出证明的思路就可以进入下一题了。

通过一定量的题目进行强化训练,学生面对各种看似复杂的图形问题,能凭着直觉作出精确的辅助线,作出了辅助线之后解题的思路也就渐渐呈现出来,能较大幅度提高证明题的解题效率。

总而言之,初中数学几何证明题是整个初中数学教学的一大难点,作为数学教师要抓好教材例题的讲解,教学上遇到困难及时带领学生回归教材,多多少少能获得启发和提示。同时也要端正教学心态,在板书和示范上尽量做细做实,切忌一笔带过,草草了事。最后要以一定量的题目及时强化训练,帮助学生牢固掌握知识点和定理的运用,这样才能提高几何证明题的教学质效。

参考文献:

[1] 吴 卫.浅谈初中几何教学中直觉思维的培养[J]. 现代教学,2010(6).

[2] 张奠宙.平面几何教学的回顾与前瞻[J].数学教学,2011(5).

[3] 辛星林.基于初中几何证明题教学的引导[J]. 中小学数学(初中版).2014(10)

[4] 张震康.浅谈几何证明方法及思路[J].语数外学习(数学教育). 2012(04)

初一下册几何证明题 篇9

证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于p,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=Fp,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.则X=DO,Y=HY,Z=DJ.因为D是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD

同理可证Fp=2DJ。

又因为FQ=Fp,EM=EN.FQ=2DJ,EN=2HD。

又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN

又因为

FQ=2DJ,EN=2HD。所以DO=HD+JD。

因为X=DO,Y=HY,Z=DJ.所以x=y+z。

2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠BON=108°时。BM=CN还成立

证明;如图5连结BD、CE.在△BCI)和△CDE中

∵BC=CD,∠BCD=∠CDE=108°,CD=DE

∴ΔBCD≌ΔCDE

∴BD=CE,∠BDC=∠CED,∠DBC=∠CEN

∵∠CDE=∠DEC=108°,∴∠BDM=∠CEN

∵∠OBC+∠ECD=108°,∠OCB+∠OCD=108°

∴∠MBC=∠NCD

又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECN

∴ΔBDM≌ΔCNE∴BM=CN

3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()

因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。

因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN

所以∠NBD=58°,所以∠NBC=61°-58°=3°

4.在正方形ABCD中,p,Q分别为BC,CD边上的点。且角pAQ=45°,求证:pQ=pB+DQ

延长CB到M,使BM=DQ,连接MA

∵MB=DQAB=AD∠ABM=∠D=RT∠

∴三角形AMB≌三角形AQD

∴AM=AQ∠MAB=∠DAQ

∴∠MAp=∠MAB+∠pAB=45度=∠pAQ

∵∠MAp=∠pAQ

AM=AQAp为公共边

∴三角形AMp≌三角形AQp

∴Mp=pQ

∴MB+pB=pQ

∴pQ=pB+DQ

5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,Bp⊥MC于点p,求证Dp⊥Np

∵直角△BMp∽△CBp

∴pB/pC=MB/BC

∵MB=BN

正方形BC=DC

∴pB/pC=BN/CD

∵∠pBC=∠pCD

∴△pBN∽△pCD

∴∠BpN=∠CpD

∵Bp⊥MC

∴∠BpN+∠NpC=90°

∴∠CpD+∠NpC=90°

几何证明选讲习题 篇10

已知正方形ABCD,E、F分别为BC、AB边上的点,且BE=BF,BH⊥CF于H,连结DH.求证:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F,求证:AF⊥CF.已知正方形ABCD,E为对角线AC上一点,AE=3CE,F为AB边中点,求证:DE⊥EF.F

B

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BACAGF90,它们的斜边长为2,若△ABC固定不动,△AFG绕点

A旋转,AF,AG与边BC的交点分别为D,E(点D不与点B重合,点E不与点C重合),设BEm,CDn.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;

(3)以△ABC的斜边BC所在直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BDCE,求出D点的坐标,并通过计算

验证BDCEDE.

(4)在旋转过程中,(3)中的等量关系BDCEDE是否始终成立,若成立,请证明;若不成立,请说明理由.

A

C G

2F 图

1图2

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.

F

E

A

E

C

B

图乙

FEC

B图甲

图丙

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC

=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.

已知:如图①所示,在△ABC和△ADE中,ABAC,ADAE,BACDAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BECD;②△AMN是等腰三角形.

(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;

△PBD∽△AMN.(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:

C

B

D

B

E

图② A

如图,已知:Rt△ABC中,C90,ACBC2,将一块三角尺的直角顶点与斜边

A 图①

AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC,AC交于D,E两点(D,E不与B,A重合).(1)求证:MDME;

(2)求四边形MDCE的面积;

(3)若只将原题目中的“ACBC2”改为“BCa,ACb(ab)”其它都不变,请你探究:MD和ME还相等吗?如果相等,请证明;如果不相等,请求出MD:ME的值.B

D

M

C

E

初中数学几何证明题解题方法探讨 篇11

【关键词】树立信心  几何思想  答题思路  答题步骤

中图分类号:G4     文献标识码:A DOI:10.3969/j.issn.1672-0407.2015.05.058

几何类题目在卷面上大都体现为几何证明题,本文就如何帮助学生攻克几何证明题这一难关提出了相关建议。

一、树立面对几何证明题的信心

纵观整个数学学科,几何证明类题目称得上是初中数学的一大难点,也是初中数学试卷上占有较大分值的一个题目,多数学生在此类题目上失分,进而影响了整体的数学成绩。有的学生甚至对此类题目产生恐惧情绪,一看到几何证明类题目,就自动跳过,主观上认为这类题目的难度太大,自己一定做不出。学生的这种恐惧心理自然而然成为了他们攻克此类题目的一大障碍。作为老师应该清楚,还没读题就打退堂鼓是解题的一大禁忌。学术研究本身就具有一定的冒险精神,断然不可以对问题产生恐惧心理。老师讲解题目的时候,应当更多地引导学生自主思考,抛出一些直接的线索,让学生自然而然想到接下来的解题思路,树立学生的自信心。老师最好能总结出几何证明题的一般规律,告诉学生几何证明类题目有规律可循。最终让学生克服恐惧,树立信心,让学生能感受到其实几何证明类题目并不难,只需要掌握一定的规律,并能将理论知识与几何图相结合,这类问题就迎刃而解了。经过老师们长时间的引导,学生对于这类题目的自信心必然能够大大提高。

二、带领学生看图读图,培养几何思想

几何证明类题目最大的难点就在于读图,而解决此类题目的突破口往往隐藏在几何图形中。然而只有少数学生能够从几何图中发掘到线索,拿到高分。究其原因,大多是因为学生做惯了文字类题目,习惯性从文字中获得线索和解题关键,读图能力弱,分析几何图形的思想不够牢固,容易忽略几何图中所揭示的重要线索。作为老师,若想强化学生几何证明题的软肋,首先要做的,就是提高学生的读图能力,培养学生的几何思想。

第一类几何思想是指数形结合的思想。老师要在授课过程中给学生养成乐于读图,并能从图中获得线索的习惯,提高学生对于几何图的分析能力,最终要让学生能自如地将课本上的理论知识与几何图紧密地结合起来,树立起数形合一的几何思想,看到几何图就能轻松写出相应的数学公式和数值。老师千万不要以解题为目的进行讲解,而是要以教会学生分析几何图为目的进行讲解。例如我们做过的经典例题,老师可以反复拿出题目中的几何图,抛开例题所设的问题,就图论图,带领学生分析几何图,或者指派学生分析,检验教学成果。

第二个需要培养的几何思想就是整体变换的思想,整体变换,顾名思义就是要将部分结合到整体,从整体中分离个体。这就需要老师多在讲解题目的过程中花心思了,逐步引导,找出部分线索,向学生抛出问题,如何将这一部分线索与整体联系起来,要让学生能够主动的思考部分与整体的关系,例如,让学生养成一看到直线就要思考是否有与已知直线平行或垂直的直线。

第三种几何思想,就是分类讨论思想。我们常常遇到一些综合性强的证明类题目,既需要学生的逻辑性,也需要学生计算部分数值来作为证明的条件,这时可能会出现答案不唯一的情况,而粗心的学生往往会漏掉部分情况。例如一些题目要求证明两个三角形全等,已知某一角度,需要求出另一角度与之相等,计算时可能会出现多种答案,而答案只能取其中之一,这时,老师需要要求学生解出所有答案,分类讨论,列出某个答案不符合条件的理由,并舍去,这样学生才能拿到满分。在分类讨论的题目上失分是很可惜的,老师需要多给学生准备些需要分类讨论的题目,要让学生看到题目能及时想到分类讨论的情况。第四种必备的几何思想是逆变化思想,指的是从要证明的部分出发,倒推条件。对于某些难度稍大的题目,往往正推会比较困难,思路很难理清,这时就需要老师来教会学生逆变化的几何思想,引导他们反方向解题,平时多加训练,加深他们对逆变化思想的印象和理解。如此一来,学生做起几何证明题才能得心应手,拿到高分。有了这些几何思想,便能初步攻克几何证明题的大门。

三、帮助学生理清答题思路

证明题的解答必须要有清晰的思路和很强的逻辑性,然而很多学生答题时的思路混乱,想起什么就写什么,完全不依据逻辑,即使他们掌握了几何思想,发掘出几何图中的线索,也未必拿得到满分。混乱的思路和解题步骤必然会给阅卷老师留下思路混乱的误导,使他们对学生的解题能力产生怀疑,进而影响得分。

作为老师,在培养完成学生的几何思想之后,第二步就是要帮助学生理清答题思路。分析出题目的所有线索后,需要条理清晰地从所有线索中提取要点,并将它们有机结合,组合成一条完整的思路,最终体现到卷面上,这是完成一道几何证明题的关键一步。首先,老师上课时的思路一定要是清晰明了的,结合课本上的理论知识,让学生体会到此类题目的依据和逻辑性,要让学生明白,思路是来源于理论知识体系。再者,老师要尽可能将解题思路简单化、通俗化,采取平铺直叙,开门见山式的讲解方法,能让学生更直观地了解到老师想要表达的解题思路。这两点可以给学生建立解题需要清晰直白的思路的思维模式。同时,老师不能一味地讲解,要留给学生独立的思考空间,培养学生独立建立理清思路的习惯。

四、规范答题步骤

上一篇:夜莺与玫瑰读后感600字下一篇:公文用词