有源模拟带通滤波器课程设计

2024-05-20

有源模拟带通滤波器课程设计(精选2篇)

有源模拟带通滤波器课程设计 篇1

电子电路仿真项目是通信工程专业教学体系中一个实践性很强的环节。它将模拟电子线

路(低频部分和高频部分)、数字逻辑电路等课程的理论与实践有机结合起来,加强学生实

验基本技能的训练,培养学生实际动手能力、理论联系实践的能力。通过本课程设计让学生

掌握电子电路系统的设计、制作、调试、仿真的方法。 二 主要器件介绍

1 滤波器

滤波器是一种对信号有处理作用的器件或电路。其主要作用是让有用信号尽可能无衰

减的通过,对无用信号尽可能大的衰减。

滤波器一般有两个端口,一个输入信号、一个输出信号,利用这个特性可以将通过滤波

器的一个方波群或复合噪波,而得到一个特定频率的正弦波。

滤波器,顾名思义,是对波进行过滤的器件。滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程。

2.滤波器的分类

2.1按所处理的信号

按所处理的信号分为模拟滤波器和数字滤波器两种。

2.2按所通过信号的频段

按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分

量。 、

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪

声。 、

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

2.3按所采用的元器件

按所采用的元器件分为无源和有源滤波器两种。

2.3.1、无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感

元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需

要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用

电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域

不适用。

2.3.2、有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组

成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不

明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器

的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如

1

集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。

1)基本原理:

有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术

制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部

分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送

入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)

信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐

波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电

力谐波。

2)应用

通信行业为了满足大规模数据中心机房的运行需要,通信配电系统中的UPS使用容量

在大幅上升。据调查,通信低压配电系统主要的谐波源设备为UPS、开关电源、变频空调

等。其产生的谐波含量都较高,且这些谐波源设备的位移功率因数极高。通过使用有源滤波

器可以提高通信系统及配电系统的稳定性,延长通信设备及电力设备的使用寿命,并且使配

电系统更符合谐波环境的设计规范。

2.4 无源滤波器和有源滤波器,存在以下的区别:

2.4.1工作原理

无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电

流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和

DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源

电流几乎为纯正弦波,其行为模式为主动式电流源输出。

2.4.2谐波处理能力

无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企

业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐

波。

2.4.3系统阻抗变化的影响

无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。

2.4.4频率变化的影响

无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。

2.4.5负载增加的影响

无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,

仅发生补偿效果不足而已。

2.4.6负载变化对谐波补偿效果的影响

无源滤波器补偿效果随着负载的变化而变化;有源滤波器不受负载变化影响。

2

2.4.7设备造价

无源滤波器较低;有源滤波器太高。

2.4.8应用场合对比分析 1.有源滤波容量单套不超过100KVA,无源滤波则无此限制;

2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同

时提供无功功率补偿。

3.有源滤波目前最高适用电网电压不超过450V

,而低压无源滤波最高适用电网电压可达

3000V。

4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、

石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场

合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。

3 运放741

uA741M,uA741I,uA741C(单运放)是高增益运算放大器,用于军事,工业和商业应用.

这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。

这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。

uA741M,uA741I,uA741C芯片引脚和工作说明:

1和5为偏置(调零端),2为正向输入端,3为反向输入端,4接地,6为输出,7接电源 8空

3

基本电压正负5V正负12V正负15V。

此次电路还需要示波器等元件。

三 带通滤波器 1.1 简介

带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到

极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-

电容电路。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。

1.2带通滤波器的工作原理:[1]

一个理想的滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并

且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。实际

上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,

尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现

象,并且使用每十倍频的衰减幅度dB来表示。通常,滤波器的设计尽量保证滚降范围越窄

有源模拟带通滤波器课程设计 篇2

1 滤波器的结构及分类

以往这种滤波电路主要采用无源元件RLC组成,60年代以来,集成运放获得迅速发展,由它和RC组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。

通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。

滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

文中结合实例,介绍了设计一个工作在低频段的二阶有源模拟带通滤波器应该注意的一些问题。

2 二阶有源模拟带通滤波器的设计

2.1 基本参数的设定

二阶有源模拟带通滤波器电路,如图1所示。图中R1、C2组成低通网络,R3、C1组成高通网络,ARa、Rb组成了同相比例放大电路,三者共同组成了具有放大作用的二阶有源模拟带通滤波器,以下均简称为二阶带通滤波器。

根据图1可导出带通滤波器的传递函数为

A(s)=Vout(s)Vin(s)=(1+RbRa)s1R1C2s2+s[1R3C1+1R3C2+1R1C2+1R2C2(-RbRa)]+R1+R2R1R2R3C1C2(1)

A0=1+RbRaR1C2[1R3C1+1R3C2+1R1C2+1R2C2(-RbRa)](2)

ω02=R1+R2R1R2R3C1C2(3)

Q=R1+R2R1R2R3C1C2R1R2(C1+C2)+C1R3[R2+R1(-RbRa)](4)

则得

A(s)=A0(sω0)/Qs2+s(ω0/Q)+ω02=A0s/(Qω0)(s/ω0)2+s/(Qω0)+1(5)

式(5)为二阶带通滤波器传递函数典型表达式,其中ω0称为中心角频率。

s=jω,代入式(4),可得带通滤波器的频率响应特性为

A˙u(jω)=A0jω/(Qω0)1-(ω/ω0)2+jω/(Qω0)(6)

归一化的对数幅频响应为

20lg|A˙u(jω)A0|=-10lg[Q2(ω0ω)-(ωω0)2+1](7)

可画出其幅频响应曲线,如图2所示。图中,当ω=ω0时,电压放大倍数最大。带通滤波器的通频带宽度为BW0.7=ω0/(2πQ)=f0/Q,显然Q值越高,则通频带越窄。

通频带越窄,说明其对频率的选择性就越好,抑制能力也就越强。理想的幅频特性应该是宽度为BW0.7的矩形曲线,如图3(a)所示。在通频带内A(f)是平坦的,而通带外的各种干扰信号却具有无限抑制能力。各种带通滤波器总是力求趋近理想矩形特性。

然而实际设计出来的带通滤波器的幅频特性曲线,如图3(b)所示。

在工程上,定义增益自A(f0)下降3 dB(即0.707倍)时的上、下限频率之差值为通频带,用BW0.7表示。要求其值大于有用信号的频谱宽度,保证信号的不失真传输。

综上分析可知:当有源带通滤波器的同相放大倍数Au=1+RbRa变化时,既影响通带增益A0,又影响Q值(进而影响通频带BW0.7),而中心角频率ω0与通带增益A0无关。

2.2 实际电路设计效果分析

为了能更好的了解二阶带通滤波器在实际电路中应用的效果,设计了如图4的电路进行实验验证。图中U1A部分为放大电路,U1B部分为二阶带通滤波器电路。

根据式(2)~式(4),设计出了中心频率在30 kHz附近,品质因素Q为1.55,频带宽度约为19.35 kHz的二阶带通滤波器,并分别对它进行了一级到四级级联所产的电压及频率数据的记录,将记录结果绘制成电压/V~频率/kHz图,如图5所示。

从图5(a)中可以看出,随着级联次数的增加,A(f0)在逐渐变大,BW0.7也在逐渐变窄,说明其对频率的选择性越来越好,对干扰信号的抑制能力也越来越强。

除了级联能增强带通滤波器对频率的选择能力以外,另外,改变品质因素Q值的大小也能达到此效果。众所周知,品质因素Q如果小于0,电路就会自激振荡,无法正常工作。从图2可以看出,Q值越高,则通频带越窄,也就是说滤波器对频率的选择性就越好,对干扰信号的抑制能力也就越强,但并不是Q值越大,电路就越好越稳定。为此,也做了如下实验,即根据式(2)~式(4),设计出了品质因素Q分别为1.55、2.99、7.87这3种中心频率(理论值)一样的二阶带通滤波器,并分别绘制出了它们的电压/V~频率/kHz图,如图5(b)所示。

从图5(b)中可以发现,品质因素Q值越大,其A(f0)在逐渐变大,BW0.7也在逐渐变窄,但是随着Q值的增加,其中心频率也在向低频端倾斜,并且低频端上升的坡度较陡,相对于低频端,高频端下降的幅度较缓。根据前面的分析也不难看出,Q值如果无限的大,会造成电路的自激振荡,无法正常工作。为了确定这点,也分别测试了Q值为2.99和 7.87两种带通滤波器在无信号输入情况下输出端的情况,如图6(a),图6(b)所示。从两个示波器的图可以看出,Q值越大,其自激的程度也就越大,当Q值达到一定数值时,自激程度与输入信号的强度相当或者比输入信号还要强,就会影响整个电路的正常工作。

2.3 数值的选取

值得注意的是,在设计电路时,首先要根据式(3)确定带通滤波器的中心频率,因为二阶带通滤波器中的元器件比较多,相互干系也比较烦琐。首先确定中心频率对以后的数值计算会有很大的简化。为了方便,也可以取R1=R3=R,C1=C2=C,Ra=Rb=R',如果想设计一个带放大的带通滤波器,可以根据式(2)或者根据有源带通滤波器的同相放大倍数Au=1+RbRa,在确定了其它数值后适当改变Ra和Rb的值得到你想要的放大倍数。这里建议不要随意大幅度改变Ra和Rb的值,因为根据式(4)可以看出在确定了其他数值后改变Ra和Rb会影响Q值,而Q值的大小直接影响到电路的工作状态是否稳定。此外,Q值对元器件数值的大小比较敏感,所以在选择元器件时尽量选取精度较高的器件。

3 结束语

虽然由集成运放和RC组成的有源滤波电路,具有不用电感、体积小、重量轻,集成运放的开环电压增益和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用等优点。但是因其品质因素Q值无法做的很大,也就导致其通频带宽度无法做的很窄,造成了该滤波器对频率的选择性不是很好,对干扰信号的抑制能力也不是很强,所以在选择设计滤波器方案的同时,要注意结合实际情况,在满足实际要求的状态下合理选用滤波器的设计方案。

摘要:根据有源模拟带通滤波器的特点,设计了一种工作在低频段且Q值在0~10之间的常用二阶模拟带通滤波器,比较了不同Q值及不同级数级联后的带通滤波器产生的通频带特性,并结合实际电路的效果评价,指出了在设计中应该注意的一些要点。

关键词:有源滤波器,带通滤波器,Q值,级联,低频

参考文献

[1]王成华,王友仁.现代电子技术基础(模拟部分)[M].北京:北京航空航天大学出版社,2005.

[2]康华光,陈大钦.电子技术基础(模拟部分)[M].北京:高等教育出版社,1999.

[3]谢嘉奎,宣月清,冯军.电子线路非线性部分[M].北京:高等教育出版社,2004.

[4]杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,1998.

[5]董在望,肖华庭.通信电路原理[M].北京:高等教育出版社,1989.

[6]闻翔,陈国杰,王志刚.信号分析系统中的极窄带滤波器的设计与实现[J].微计算机信息,2005,21(18):104-105.

[7]陈传军.微宽带匹配3GHz低通滤波器的设计[J].现代电子技术,2005(15):39-41.

上一篇:《醉翁亭记》阅读题与参考答案下一篇:关于爱情的故事:鹊桥·牵手