试论通信原理课程教学改革

2024-06-29

试论通信原理课程教学改革(通用10篇)

试论通信原理课程教学改革 篇1

课程名称:通信原理(Principle of Communication)总学时数:64学时 学

分:4学分 课程类别:必修

先修课程:信号与系统、通信电子线路等 教

材:《通信原理》,国防工业出版社,樊昌信等编著 参考书目:曹志刚等编著,《现代通信原理》,清华大学出版社,1992年出版

周炯磐等编著,《通信原理》,北京邮电大学出版社,2002年出版 《课程内容简介》:通信原理是通信工程专业一门主干专业基础课,主要内容包括模拟通信和数字通信,侧重数字通信。大致可分为三个部分:通信基础知识和模拟通信原理;数字通信、模拟信号数字化和数字信号最佳接收理论;数字通信中的编码和同步等技术。

一、课程性质、目的和要求

本课程是通信工程专业的一门主干专业基础课,主要讲述通信系统的组成,各种调制和解调的原理、方法及性能指标的计算,要求学生通过本课程的学习,掌握通信系统的分类及各部分的原理、性能分析、噪声对系统的影响。

通过本课程的学习,使学生达到如下要求:

1、熟练掌握数字信息传输的基本概念、基本分析方法。

2、了解信息理论基础知识、信道传输概念。

3、熟练掌握数字基带传输,频带传输的工作原理,频带传输系统的组成、传输波形及频谱。基带传输中码间串扰问题及解决方法。

4、了解数字通信系统的同步方式。

5、掌握数字传输中的差错控制的基本思想及常用方法。

6、了解正交编码及伪随机序列的原理及应用。

7、对数字传输系统有一个清晰的认识。

二、教学内容、要点和课时安排

《通信原理》授课课时分配表

01.绪论 4

02.随机信号分析 8 03.信道 6

04.模拟调制系统 6 05.数字基带传输系统 8

06.数字调制系统 8

07.模拟信号的数字传输 6

08.数字信号的最佳接收 6 09.差错控制编码 4

10.正交编码与伪随机序列 4 11.同步原理 4

本课程的教学内容共分11章。

第一章:绪论

主要内容是:通信系统组成;通信系统的分类及通信方式;信息及其量度;主要性能指标。

重点、难点:通信系统组成;信息及其量度;

第二章:随机信号分析

主要内容是:随机过程的一般表述;平稳随机过程;平稳随机过程的相关函数与功率谱密度;高斯过程;窄带随机过程;正弦波加窄带高斯过程;随机过程通过线性系统。

重点、难点:平稳随机过程;正弦波加窄带高斯过程;随机过程通过线性系统。

第三章:信道

主要内容是:信道定义;信道模型;恒参信道及其对信号传输的影响;随参信道及其对信号传输的影响;随参信道特性的改善(分集接收);加性噪声;信道容量的概念。

重点、难点:信道模型;加性噪声;信道容量。

第四章:模拟调制系统

主要内容是:幅度调制(线性调制)的原理及抗噪声性能;非线性调制(角度调制)的原理与抗噪声性能;各种模拟调制系统的比较;频分复用(FDM);复合调制及多级调制的概念。

重点、难点:幅度调制的原理及抗噪声性能;非线性调制的原理与抗噪声性能;各种模拟调制系统的比较。

第五章:数字基带传输系统

主要内容是:数字基带信号及其频谱特性;基带传输的常用码型;基带脉冲传输与码间干扰;无码间干扰的基带传输特性;部分响应系统;无码间干扰的基带系统的抗噪声性能;眼图;时域均衡。

重点、难点:基带传输的常用码型;无码间干扰的基带传输特性;部分响应系统;无码间干扰的基带系统的抗噪声性能。

第六章:数字调制系统

主要内容是:二进制数字调制原理;二进制数字调制系统的抗噪声性能;二进制数字调制系统的性能比较;多进制的数字调制;改进的数字调制方式。

重点、难点:二进制数字调制原理及抗噪声性能。

第七章:模拟信号的数字传输

主要内容是:抽样定理;脉冲振幅调制;模拟信号的量化;脉冲编码调制;差分脉冲编码调制;增量调制;DPCM系统的量化噪声;时分复用和多路数字电话系统。

重点、难点:抽样定理;脉冲编码调制。

第八章:数字信号的最佳接收

主要内容是:数字信号接收的统计表述;最佳接收准则;确知信号最佳接收;随相信号的最佳接收;起伏信号的最佳接收;普通接收机与最佳接收机的性能比较;匹配滤波器的实现;最佳基带传输系统。

重点、难点:最佳接收准则;普通接收机与最佳接收机的性能比较;匹配滤波器的实现。

第九章:差错控制编码

主要内容是:纠错编码的基本原理;常用的简单编码;线性分组码;循环码;卷积码;网格编码调制。

重点、难点:线性分组码;循环码。

第十章:正交编码与伪随机序列

主要内容是:正交编码;伪随机序列;伪随机序列的应用。

重点、难点:伪随机序列。

第十一章:同步原理

主要内容是:载波同步方法;载波同步系统的性能;载波相位误差和对解调性能的影响;位同步方法、性能;群同步;扩展频谱系统同步。

重点、难点:载波同步方法;位同步方法;群同步方法。

三、教学方法

本课程是一门理论性强,涉及知识面较广的课程。为了使学生便于理解讲课内容,采用教师讲授为主,辅助多媒体教学,并结合学生的大量练习与实践练习的教学方法。

四、成绩考核方式

试论通信原理课程教学改革 篇2

1 通信原理课程的特点

《通信原理》是一门重要的专业技术基础理论课,是通信学科的重要支撑点之一,在学生培养方面对通信学科发展具有深远的影响。本课程是学习其它专业课程的重要基础,是培养学生掌握通信系统分析、设计方法的重要基础,也是支撑学生在通信学科上进一步深造和发展的重要基础。通过学习这门课程,使学生获得必要的通信学科基础知识,为后续专业课程的学习打下扎实的理论基础;使学生建立清晰的系统概念,掌握通信系统的一般分析方法,并具备一定的通信系统设计能力;使学生了解通信技术的最新发展方向,从而把握通信学科发展脉络,激发学生的主动性与创新性。

《通信原理》课程具有系统性强,内容编排连贯,课程内容难度大,公式较多,学生学习难度较大,需要很多基础知识,比如需要掌握高等数学中的微积分,随机过程中的随机信号处理;矩阵论中的矩阵运算,模拟电路,数字电路,信号与系统等基础知识。

《通信原理》的教学内容以介绍通信系统与通信技术为主,主要分为模拟与数字两个部分。课程的具体内容包括:模拟通信(模拟线性调制和非线性调制系统)、模拟信号数字化(抽样、量化、PCM编码)和数字通信(数字信号基带传输系统和数字信号载波传输系统)。这些内容都是现代通信技术的基础,但是同时又是不断变化发展的。

2 通信原理课程教与学的现状

通信原理课程作为一门重要的专业技术基础理论课,是普通高等学校的相关专业的主干基础课程。但是由于新技术的不断涌现,已有的旧技术在不断的淘汰中,许多我们熟知的技术将渐渐成为历史,比如:由于时分交换机的淘汰,通信原理里的PCM编码将不复存在;软交换的来临和网络IP化,今后全网数据将全部由IP包承载,TDM交换机将被迅速淘汰,业务更多的采用路由器来承载;随着IP化进程的深入,传统的7号信令将会退出;与光电最为密切的是,SDH也将逐步退出等等。

因此作为系级教学单位,应该及时修改教学大纲,调整教学内容。作为教师,应该不断学习新技术,了解新动向,提高自己的业务水平,才能跟上时代的发展、技术的发展。但是由于当前IT、通信行业的红火,很多优秀人才都到了国内外大型通信企业供职,比如国内的华为、中兴等,国际的摩托罗拉、朗讯、思科等。这也造成了相对于其它专业,通信类优秀教学人才的匮乏,教师知识结构比较老化。对于学生,由于本学科的难度,很多学生学完四年,感觉离掌握还很远。

3 几点建议

首先,作为教学单位,应该根据自身特点,结合学校、学生实际情况:

(1)制订课程的长期规划,明确阶段建设目标。

(2)跟进新技术的发展,及时更新教学大纲。在制定新的教学大纲时,应该明确专业方向;加强基础知识的教学;设置专题内容,介绍、普及新技术、新潮流,以引起学生的学习兴趣;参考最新技术发展,适当修改课程内容。在制定新的教学大纲时,必须综合考虑知识点的取舍。比如一些旧的技术在以后的新系统中肯定会被淘汰,但是PCM编码、七号信令等这些通信史上的经典技术不得不仍然要讲授,不过在内容上可以适当删减。这样做可以让学生了解相关技术的历史,更好的理解新的技术。

(3)围绕课程教学大纲,重视课程教学手段和方式的创新与改革,例如更多地加入互动的内容,包括布置设计性的作业,培养学生综合分析问题与解决问题的能力,提高课程教学的培养效果。

(4)参考国内外高校类似课程的建设经验,根据专业的不同,用开放的教学理念,适当调整、更新课程的教学计划和教学内容,例如,针对通信工程专业,可以适当补充最新的MIMO、OFDM等新技术、新系统,从通信原理的角度,让学生理解《通信原理》的基本概念、基本方法在最新的通信技术与通信系统中的应用与拓展,做到理论联系实际。

其次,在确定课程教学内容以及教学过程中,应该注意以下内容:

(1)以通信系统为背景,解决本课程与其它课程的衔接问题。自七十年代国内开设《通信原理》这门课以来,教学内容一直在伴随通信技术的发展而演进。国内大部分通信原理教学内容模式形成于八十年代中期。但是随着通信技术的不断发展,这种模式已经不能跟上时代的步伐。实际上,从国内外几乎所有的通信原理教材来看,传统模式的教学内容只是这些教材所认同的教学内容的大约一半多。

本课程一方面与先修课程联系较紧密,包括信号与系统、随机过程、高等数学等。然而由于课时限制,不允许安排较多的课时来对这些课程内容进行回顾。因此,如何能保证绝大部分同学跟上课程进度是一个非常重要的问题。尤其是前面这几门已修课程学得不太好的同学,往往在开学之初就会由于大量公式的出现而产生畏惧心理,觉得自己基础不好,这门课肯定学不好。针对这种情况,应该安排专门章节来对这些内容在通信系统这个大背景下进行复习、总结和提高。例如针对《信号与系统》,可以从复习时域以及频域卷积定理入手,引出乘法器和滤波器。这样可以很好地消除学生的为难情绪,树立他们的信心并引导他们的兴趣。此外,在复习随机过程时,可以举基带传输时的误码率计算的例子,不过在介绍具体系统之前,把这个问题作为随机过程的例子给出并请同学解答。后面再介绍到具体系统并需要求解误码率时,再提示学生回到这一部分,这样学生可以真正了解随机过程分析方法在通信系统中的应用。

同时,本课程还与移动通信、无线通信网络、程控交换、信息论与编码等后续课程联系紧密。因此本课程特别注重整个系统模型的介绍,先把整个通信系统模型搭建出来,这样学生在学习后面课程时,可以将相关内容放在系统框架中来进行考察。

(2)以通信系统信号设计与处理为核心,解决本课程中公式较多的问题。该课程具有原理性强、系统性强、数学分析多等特点,其教学的重点和难点在于清楚地让同学们把握相关的基本概念、基本原理、基本分析方法和重要结论。而基本概念和基本原理的正确理解又是学习和掌握现代通信系统基本分析方法和重要结论的前提条件,二者相辅相成、互为印证。基于本课程的特点和课程教学过程中的教学重点和难点,在教学过程中,应该有意识地选择相关教材认真阅读,并力求把课程所涉及到的基本概念通过比较浅显易懂的方式把所相关的基本概念的物理含义和物理原理讲述清楚,将数学推导与系统模型联系起来,让学生能够建立起完整的通信系统概念。同时《通信原理》课程的主要内容紧紧围绕通信系统的核心——通信系统信号设计和信号处理展开。在教学工作中,特别注意把握这一核心,并注意结合课程相关内容,更好地理解阐述通信技术的发展和演变历程。

(3)从学生专业背景出发,精选教学内容。我们在教学研究中一直致力于优化课程体系,精选教学内容以做到因材施教。首先,通信专业学生在对课程把握的深度和广度上应与其它专业学生有所不同。因此,为通信专业开设的课程,选取的讲述内容要比其它专业学生更深更广,并注意与移动通信、无线通信网络以及程控交换等专业课程的衔接和过渡。对于其它专业的学生,对该课程的要求应该与通信专业学生有所区别。

(4)结合通信发展最新趋势,扩展学生视野。本课程主讲教师应该了解通信系统发展的最新进展,在课程内容的安排上,注重介绍目前通信技术的发展潮流。课程中进一步精简模拟通信部分的内容,在多进制数字调制等方面增加课时,同时应该在课程中介绍软件无线电、MIMO等研究热点问题。

最后,理论教学指导实践教学,实践教学促进理论教学。通信是一门理论与实践结合非常紧密的学科,因此实践教学在本课程中也占据了非常重要的地位。理论教学与实践教学应该是互相渗透、彼此促进,基于这种思想,应该:

(1)在实验教学中通过预习以及总结报告的设计对理论课内容进行复习、总结和提高。学生做实验收获如何,很大程度上取决于他们对理论课内容的理解以及实验之前的准备。因此,针对每个实验应该设计专门的预习报告,在预习报告中以问答题或者仿真题的形式,请学生按照理论课教授的内容,给出实验的预期结果,这样做实验才能有的放矢。此外,在实验过程中,学生如果发现实际系统中遇到的很多问题是理论课上没有讲授的,可以通过总结报告中的问答题来启发他们思考并在总结报告中给出解释。

(2)在理论教学中引入仿真软件给学生建立对通信系统的直观概念。针对课程内容,应该专门开发一些软件仿真实例和软件仿真习题以供课堂演示和学生课后完成。这样有利于学生建立通信系统的整体概念并可以通过软件提供的工具观察时域、频域特性,以取得更好的教学效果。

(3)验证性实验和设计性实验相结合。验证性实验和设计性实验对于学生能力的培养具有不同功效,因此需要有机地结合起来。根据它们各自特点,应该将验证性实验安排在实践教学课程前半学期,其作用主要是帮助学生巩固理论课所学知识并做小范围扩展;而设计性实验一般安排在教学课程后半学期,其作用主要是培养学生动手能力,例如软件编程、硬件设计等。

(4)软件仿真实验和硬件实验相结合。软件仿真实验对于帮助学生深入了解通信系统、对通信系统进行分析设计具有重要意义。因此设计实验的一个重要思路是同一个实验,例如BPSK调制,要求学生在验证性实验箱、软件仿真以及电路板上这三种途径来实现。

(5)模块实验与系统实验相结合。由于通信系统讲授是分章节来的,因此单个实验的设计也是按照模块划分,例如基带传输,频带调制解调,高斯信道等。在模块实验基础上,在后续课程,包括通信工程实验以及工程实习中,应该将各个模块串联前来,形成完整的通信系统,以帮助学生站在全局的角度更好地理解通信系统。通信原理实验课程是与《通信原理》相配套的一门实验课,紧密结合理论课程中的主要知识点,开设相关的软件仿真及硬件实验,帮助学生对理论知识的理解,能够建立各种模拟、数字通信系统的仿真模型,使学生不断提高分析问题和解决问题的能力,并在此基础上培养学生软件编程及硬件设计的能力。

4 结束语

本文首先从通信新技术的不断涌现给普通高校通信专业的课程建设提出了更高的要求出发,引出了“通信原理课程该教什么?”,“通信原理课程该怎么教?”等问题。然后具体分析了当前普通高校《通信原理》课程教与学的现状,以及存在的问题,并针对这些问题,在教学大纲的修订、教学内容的改革、实践教学内容的设计上提出了一些建议。

参考文献

《通信原理》课程教学探索 篇3

摘 要 《通信原理》是通信工程、电子信息等信息类专业的一门核心基础课,存在理论性强、不易与实际相结合的特点,笔者根据多年的通信系统设计经验以及大学本科授课体会,在理论实验教学、教学方法、教学手段以及考核方式等多方面进行了探索,以期改善教学效果,提高授课质量。

关键词 通信原理 教学改革 教学内容 教学方法

中图分类号:G642.0 文献标识码:A 文章编号:1002-7661(2014)02-0003-02

随着数字通信技术和计算机技术的快速发展,信息技术已成为21世纪世界经济发展的主要动力,信息的传播方式也从上世纪末的以书信和固定电话为主转变为蜂窝移动通信和计算机网络通信等。学习和掌握现代通信系统和技术也成为信息社会每一位成员,尤其是未来的通信工作者的迫切需求。作为现代通信系统的理论基础——通信原理的教学质量,直接影响到我国未来通信人才的理论基础甚至未来整个通信产业的发展和竞争力,因此对通信原理课程进行教学改革和探索具有深远的意义。本文拟从多方面对通信原理课程进行改革,特别是在教学方法、教学手段和教学内容上做出创新与改革。

一、改革理论教学,夯实理论基础

《通信原理》课程是通信工程、电子信息工程、电子信息科学与技术、信息工程等专业必修的专业基础课,主要内容包括:随机过程及信道、模拟调制和数字调制系统、数字基带传输系统、PCM终端技术、最佳接收的概念等。通过本课程的学习,一方面可使学生熟悉现代通信的基本概念、基本原理,掌握分析和研究通信系统的基本方法;另一方面,通过课程的实验实践,灵活运用理论知识,设计和仿真较大规模通信系统,可培养学生解决实际问题的能力,为专业课的学习和今后的工作打下良好的基础。由于这门课程内容比较丰富,原理性较强,抽象概念多,除了用到先修课程信号与系统的相关知识,也需要具有较为扎实的数学理论基础,特别是概率论和数理统计方面的知识,并且前后概念与内容相互交错,知识体系繁杂,对于教和学都有一定的难度。因此在讲解过程中一定要注意把繁琐的理论推导简单化,尽量进行理解性、简单化讲解,总体目的是使学生能够掌握通信系统的基本处理方法和思路,而不是陷入繁琐的数学推导中却把握不住方向。考虑到近年来数字通信技术的迅猛发展,要侧重于数字通信基础理论方面的讲解,并且要联系当前热门的3G和4G等移动通信系统。同时理论的讲解要结合必要的能够充分说明问题的例题,理论是抽象的,而例题是接近实际问题的,因此例题的讲解能够更好地强化学习的效果。此外,在选择和设计例题时,要多联系前后知识点,既能够回顾过去的知识点,解释当天课程内容的应用方法,又能够引出后面章节的知识内容。最后给同学们一定的练习题并适时的进行习题讲解说明,通过多个方面的结合来加深学生对知识点的掌握。

二、改革实验教学,紧密联系实际

《通信原理》课程通常会有一定学时的实验教学,帮助学生熟悉通信系统的基本概念、基本原理、采用的相关技术等,建立通信系统较为完整的框架体系,在分析和理解通信系统方面建立统一的理论和感性认识。实验往往是通过通信原理实验箱来进行,一般包括PCM编译码、AMI/HDB3编译码、FSK调制解调过程以及帧结构及其传输等实验内容,来了解通信信号的产生、传输和接收的整个流程。比如通过模拟电话的抽样、量化和编码实现模拟信号的数字传输,接收的时候再进行模拟信号的还原,并可通过示波器来观测传输过程中各部分信号的变化,能够直观的让学生了解到一个基本通信系统的整个流程,激发学生学习的兴趣。但由于实验箱上的实验大多都是验证性的实验,而且过于基本,学生仍然不能够了解每个部分内部的实现方法,也不能够了解目前通信系统实现中常用的技术方法,因此可以添加Matlab或者Simulink等方面的实验内容,着重对一些常用的数字基带调制解调方式,如QPSK和QAM等进行编程仿真,绘制误比特率曲线,更进一步可以将实现过程定点化,使学生更能够学习到实际实现时的种种细节,更深入地理解相关理论知识。

三、改革教学方法,激发学生兴趣

教学内容体系确定后,采用什么样的教学方法与教学手段是非常重要的。通信原理是一门理论性较强,数学公式较多的学科,对学生的数学基础也有较高的要求,如果是按部就班的讲解会比较枯燥,因此在教学手段上以多媒体教学为主,传统黑板板书为辅,在教学方法上面注重与现实结合,引发学生的学习兴趣。在讲授过程中,结合现代通信发展的现状,穿插讲授各种基础技术理论的发展演变和现实当中的应用,做到让学生学得有目的、有感受,而不是孤立的学习理论知识。比如说目前与我们生活密切结合的WIFI技术和蜂窝通信系统,在每一部分内容的讲解上都可以跟这些系统的某些部分联系起来,并辅以Matlab或者Simulink的仿真演示,让学生真切体会到这些知识点的应用带来的优势,解决了哪些方面的问题等,从而达到增加学生学习兴趣,强化学习效果的目的。

四、改革考核方式,提高考核质量

考核是对学习的结果做出评估,是反映教学效果的手段。而课程开设能否达到既定的教学目标,课程的考核方式有着比较重要的作用。针对《通信原理》课程特点,考核方式作如下尝试:结合课程的专业特点,采用试卷笔试和实验编程相结合的考核方式。笔试主要侧重于考核学生对于理论基础知识的掌握情况。在出题的时候要注意将概念性的知识应用化,不单纯考学生对概念的记忆情况,而是考核学生对概念是否理解,能否在实际当中应用的能力。实验编程可以根据平时实验课上的学习内容稍加变动,考核同学们在已学知识的基础上的实际问题处理能力和应变能力。综合两个方面可以全面地对学生做出考核,并且可以引导学生从考试前突击进行死记硬背的思维中走出来,从而提高教学效果。

教学过程是一个不断探索、总结与创新的过程,目前仍存在不足之处,比如如何能够将通信中的概念和原理讲解的深入浅出;如何能够进一步提高自己的教学能力和课堂气氛的调动能力;如何提高基础差学生的学习能力,又能够兼顾吸收较快的同学有新的学习点等。在今后的教学实践中,笔者将加强与同行交流学习,进一步完善教学内容、教学实践、教学方法、教学手段以及考核方式等,以期获得更好的教学效果。

参考文献:

[1]蒋青,于秀兰.通信原理(第2版)[M].北京:人民邮电出版社,2008.

[2]樊昌信等.通信原理(第6版)[M].北京:国防工业出版社,2011.

[3]白运新.现代通信原理实验教学改革初探[J].读写算(教师版):素质教育论坛,2008,(9).

通信原理课程设计 篇4

程 设计

班级:

姓名:

学号:

任课教师:

Simulink建模仿真实现频分复用

 设计目的

掌握频分复用工作原理

学会使用Simulink建模仿真

 设计题目涉及的理论知识

当一条物理信道的传输能力高于一路信号的需求时,该信道就可以被多路信号共享,例如电话系统的干线通常有数千路信号的在一根光纤中传输。复用就是解决如何利用一条信道同时传输多路信号的技术。其目的是为了充分利用信道的频带或时间资源,提高信道的利用率。

信号多路复用有两种常用方法:频分复用(FDM)和时分复用(TDM)。时分复用通常用于数字信号的多路传输。频分复用主要用于模拟信号的多路传输,也可用于数字信号。

频分复用是一种按频率来划分信道的复用方式。在FDM中,信道的带宽被分成多个相互不重叠的频段(子通道),没路信号占据其中一个子通道,并且各路之间必须留有未被使用的频带(防护频带)进行分隔,以防止信号重叠。在接收端,采用适当的带通滤波器将多路信号分开,从而恢复出所需要的信号。

在物理信道的可用带宽超过单个原始信号(如原理图中的输入信号1、2、3这3路信号)所需带宽情况下,可将该物理信道的总带宽分割成若干个与传输单个信号带宽相同(或略宽)的子信道;然后在每个子信道上传输一路信号,以实现在同一信道中同时传输多路信号。多路原始信号在频分复用前,先要通过频谱搬移技术将各路信号的频谱搬移到物理信道频谱的不同段上,使各信号的带宽不相互重叠(搬移后的信号如图中的中间3路信号波形);然后用不同的频率调制每一个信号,每个信号都在以它的载波频率为中心,一定带宽的通道上进行传输。为了防止互相干扰,需要使用抗干扰保护措施带来隔离每一个通道。 设计思想(流程图)

整个系统的流程为:

输入正弦信号→低通滤波器→调制器→带通滤波器→高斯信道→带通滤波器→解调→低通滤波器→输出信号  仿真模块

正弦信号;Sine Wave模块

低通滤波器 :Analog Filter Design-lowpass模块

调制器:Analog Passband Modulation ,提供模拟调制技术。

DSB AM Modulator Passband模块 DSBSC AM Modulator Passband模块 SSB AM Modulator Passband模块

带通滤波器:Digital Filter Design模块

信道:AWGN channel,加性高斯白噪声信道。

解调器:Analog Passband Modulation ,提供模拟调制技术。

DSB AM Demodulator Passband模块 DSBSC AM Demodulator Passband模块 SSB AM Demodulator Passband模块 输出:Scope模块 加法:Sum 模块

 仿真模型和模块的参数设置

参数设置 仿真结果设置Sine Wave模块参数,双击模块删除默认值输入新的设置 设置Amplitude 为1 设置Frequency为2*pi 设置Samples per frame 为0.01 低通滤波器

设置filter order为8

设置 passband edge frenquency 为30

3带通滤波器 信道

设置 Initial seed 67

设置 Mode Variance from mask 调制器

设置 Carrier frenquency 100 6 解调器

设置Carrier frenquency 100

结论(结果分析)

通过对以上三个不同的信号进行低通、带通滤波和AM、DSB、SSB的调制解调得出三个不同的波形。从而知道频分复用利用同一个信道同时传输多路信号的,充分利用信道的频带或时间资源,提高信道的利用率。尽管在传输和复用过程中,调制解调等过程会不同程度的引入非线性失真,而产生各路信号的相互干扰,但是频分复用仍然可以普遍应用在多路载波电话系统中。

通信原理课程设计[范文] 篇5

题目:

信 原 理课程设计

基于MATLAB的系统的2ASK仿真

五、设计心得和体会„„„„„„„„„„„„„„„„„„„„„„„

1、心得和体会……………………………………………………………

2、致谢……………………………………………………………………

参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

一、2ASK通信系统发展背景

随着通信技术日新月异的发展,尤其是数字通信的快速发展越来越普及,研究人员对其相关技术投入了极大的兴趣。为使数字信号能在带通信道中传输,必须用数字信号对载波进行调制,其调制方式与模拟信号调制相类似。根据数字信号控制载波的参量不同也分为调幅、调频和调相三种方式。因数字信号对载波参数的调制通常采用数字信号的离散值对载波进行键控,故这三种数字调制方式被称为幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)。经调制后的信号,通过信道传输,在接收端解调后恢复成数字信号。因此,调制解调技术是实现现代通信的重要手段,促进通信的快速发展。

现代通信系统要求通信距离远、通信容量大、传输质量好。作为其关键技术之一的调制解调技术一直是人们研究的一个重要方向。从最早的模拟调幅调频技术的日臻完善,到现在数字调制技术的广泛运用,使得信息的传输更为有效和可靠。二进制数字振幅键控是一种古老的调制方式,也是各种数字调制的基础。

二、仿真设计原理 1、2ASK信号的调制

2ASK技术是通过改变载波信号的幅值变化来表示二进制0或1的。载波0,1信息只改变其振幅,而频率和相位保持不变。通常使用其最大值Acos(t)和0分别表示1和0.有一种常用的幅值键控技术是开关键控(OOK)在OOK中,把一个幅度取为0,另一个幅度取为非0,其优点是传输信息所需的能量下降了,且调制方法简单.OOK的产生原理如图2、2ASK信号的解调

接收端接收信号传来的2ASK信号,首先经过带通滤波器滤掉传输过程中产生的噪声干扰,再从中回复原始数据信号。常用的解调方法有两种:包络解调法和相干解调法。

相干解调法

相干解调也叫同步解调,就是利用相干波和接收到的2ASK信号相乘分离出包含原始信号的低频信号,再进行抽样判决恢复数字序列。相干波必须是与发送端同频同相的正弦信号。Z(t)=y(t)cos(t)=m(t)cos2(t)=111m(t)[1+cos(2t)]=m(t)+m(t)cos(2t).式中1/2m(t)是基带信号,2221/2m(t)cos(2t)是频率为2的高频信号,利用低通滤波器可检测出基带信号,再经过抽样判决,即可恢复出原始数字信号序列{an},2ASK信号带宽为码元速率的2倍,即:B2ASK=2Rb.式中Rb为信息速率。

相干解调的原理图如下

三、直接用MATLAB编程仿真

1、实验框图

在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。必须用数字基带信号对载波进行调制,产生

元速率Rb=1000Band,载波频率为f=4kHZ.以下是仿真程序及注释。例子中采用OOK键控方式实现2ASK调制。第一行为数字序列波***1的单极性不归零码,码元宽度Tb=1/Rb=0.001s,第二行为载波波形,在一个码元宽度,有4个周期的正玄波载波信号f=1/4Tb=4kHz;第三行为调整之后的波形,码元1对应的调制后波形对应正玄波,0对应的调制后波形为0,结果满足要求.。

%数字信号的ASK调制

3、使用MATLAB编程

Clear;

%清空空间变量 m=[1 1 1 0 0 0 1 0 1 1 0 1];

%数字信号序列 Lm=length(m);

%序列的长度

F=200;

%数字信号的带宽

f=800;

%正弦载波信号的频率 A=1;

%载波的幅度

Q=f/F;

%频率比,即一个码元宽度中的正弦周期个数,为适配下面的滤波器参数选取,Q>=1/3 M=500;

%一个正弦周期内的采样点数 t=(0:M-1)/M/f;

%一个正弦信号周期内的时间

carry1=repmat(A*sin(2*pi*f*t),1,Q);%一个码元宽度内的正弦载波信号 Lcarry1=length(carry1);

%一个码元宽度内的信号长度 carry2=kron(ones(size(m)),carry1);%载波信号

ask=kron(m,carry1);

%调制后的信号 N=length(ask);

%长度 tau=(0:N-1)/(M-1)/f;

%时间 Tmin=min(tau);

%最小时刻 Tmax=max(tau);

%最大时刻 T=ones(size(carry1));

%一个数字信号1 dsig=kron(m,T);

%数字信号波形 subplot(3,1,1);

%子图分割 plot(tau,dsig)

%画出载波波形 grid on

%添加网 axis([Tmin Tmax-0.2 1.2])

%设置坐标范围 subplot(3,1,2)

%子图分割 plot(tau,carry2)

%画出载波波形 grid on

%添加网络

axis([Tmin Tmax-1.2*A 1.2*A]);%设置坐标范围 subplot(3,1,3)

%子图分割 plot(tau,ask)

%画出调制后的波形 grid on

%添加网络

axis([Tmin Tmax-1.2*A 1.2*A])%设置坐标范围

y=(x(t_judge));

%抽样判决时刻的信号值 y_judge=1*(y>=th)+0*(y<=th);

%抽样判决信号的0阶保持 y_value=kron(y_judge,ones(size(carry1)));

%抽样判决后的数字信号波形 n_tau=tau+0.5/F;

%抽样判决后的信号对应时间 subplot(4,1,3)

plot(n_tau,y_value)

axis([min(n_tau)max(n_tau)grid on subplot(4,1,4)plot(tau,dsig)

axis([Tmin Tmax-0.2 1.2])grid on

1、图示

%子图分割

%画出抽样判决后的数字信号波形-0.2 1.2])

%画出原始信号波形与解调后信号作对比

四、仿真结果

011

为使仿真过程清晰,忽略了信道的传输延时等,仅考虑了抽样判决点选取时的延时0.5Tb,因码元波特率RB=1000Band,码元宽度Tb=1/Rb=0.001s 故0.5Tb=0.0005s,从图中标注可以看出,信号的起始点为0.0005s。

五、设计心得和体会

1、心得和体会

通过本次课程设计,我们主解了要了2ASK调制与解调原理,特别是2ASK调制解调电路的MATLAB实现与调制性能分析,把本学期学的通信原理等通信类科目的内容应用到本课程设计中来,进一步巩固复习通信原理,MATLAB等课程,以达到融会贯通的目的。

通过对通信系统原理和MATLAB的学习,在通过硬件实现时会时不时地会出现一些问题,诸如:某个芯片的用法、其适用范围、其典型应用时会出现的问题、滤波器的设计、模拟电路中反馈电阻与控制增益器件的调节等等,都需要理论知识和实践经验结合才能解决。在此期间,首先,通过查阅相关书籍、文献,搞清楚原理框图,为今后的实验及论文写作奠定比较扎实的理论;其次,在原理图的基础之上,设计具体的硬件实现流程图,利用将一个大而复杂的系统分解转化为多个小而简单的模块的思想,在进行整合、连接,将复杂的问题简单化。了解了更多关于通信的知识,对以后的学习和工作又了莫大的帮助。通过本次课程设计,加强了对通信系统原理的理解,学会查寻资料、方案比较,以及设计计算及仿真等环节,进一步提高了分析解决实际问题的能力。在学习通信原理理论后进行一次电子设计与制作,锻炼了分析、解决电子电路问题的实际本领。为进一步学习计算机网络,数据通信,多媒体技术等课程打下坚实的基础。运用学习成果把课堂上学的系统化的理论知识,尝试性的应用于实际设计工作,并从理论的高度对设计工作的现代化提高一些有真惰性的建议和设想,检验学习成果,看一看课堂学习与实际工作到底有多大差距,并通过综合分析,找出学习中存在的不足,以便为完善学习计划,更边学习内容提供实践依据。

2、致谢

在此,首先要感谢蔡老师对我们一直以来的关心和照顾,细心给我们解答疑惑,帮助我们更好的学习,同时还要谢谢同学们热情的帮助。最后,祝老师新年快乐!笑口常开!

参考文献

[1]《通信原理》(第2版)樊昌信 等编著

国防工业出版社 北京

FDMA通信原理课程设计 篇6

FDMA系统仿真

1.课程设计目的

(1)巩固课本所学的有关理论知识。

(2)加深对FDMA通信系统的理解和掌握相关知识。(3)掌握带通滤波器和低通滤波器的设计(4)掌握Matlab软件的基本使用。

(5)学会运用Matlab软件进行一些仿真和设计。

2.课程设计要求

(1)对所做课题进行相关资料查询。(2)对课题构建框架,理清制作思路。

(3)通过MATLAB7.1完成FDMA系统仿真,结果体现其特点。(4)对结果进行记录,分析,完成报告。

3.相关知识

3.1寻址方式的概念

为了提高通信系统信道的利用率,通常多路信号共享同一信道进行信号的传输。为此,引入信道多址寻址的概念。多址寻址是指在同一信道上传输多路信号而互不干扰的一种技术。目前的多址寻址方式是基于常规通信中的多路复用模式所创建的,最常用的多路复用有频分复用(FDM)、时分复用(TDM)和码分复用(CDM)。进而在多址寻址分类中,按频带区分信号的方法是频分多址(FDMA);按时隙区分信号的方法是时分多址(TDMA);按相互正交的码字区分信号的方法是码分多址(CDMA)。

沈阳理工大学通信系统课程设计报告

3.2频分多址的基本工作原理

频分多址(FDMA)是使用最早、目前使用较多的一种多址接入方式,广泛应用于卫星通信、移动通信、一点多址微波通信系统中。

FDMA通信系统核心的思想是频分复用(FDM),复用是一种将若干个彼此独立的信号合并为一个可在同一个信道上传送的复合信号的方法。例如,在电话通信系统中,语音信号频谱在300—3400Hz内,而一条干线的通信资源往往远大于传送一路语音信号所需的带宽。这时,如果用一条干线只传一路语音信号会使资源大大的浪费,所以常用的方法是“复用”,使一条干线上同时传输几路电话信号,提高资源利用率。

频分复用(FDM)是信道复用按频率区分信号,即将信号资源划分为多个子频带,每个子频带占用不同的频率。然后把需要在同一信道上同时传输的多个信号的频谱调制到不同的频带上,合并在一起不会相互影响,并且能再接收端此分离开。

4.课程设计分析 4.1输入信号的产生

频分多址(FDMA)输入模块如图4.1所示。

图4.1 频分多址(FDMA)输入模块

利用Simulink中的三个信号发生器(Signal Generator),产生幅度为1,频率为4Hz的正弦信号,4Hz频率的方波信号,以及频率为3Hz的锯齿波信号。

沈阳理工大学通信系统课程设计报告

4.2调制与解调模块

频分多址(FDMA)调制与解调模块如图4.2所示。

(a)频分多址(FDMA)调制模块

(b)频分多址(FDMA)解调模块

图4.2频分多址(FDMA)调制与解调模块

模块DSB AM(De)Modulator Passband 的作用是双边带调制/解调模块,采用的是正弦载波信号。这里三个信号发生器产生的分别是4Hz 的正弦、4Hz 的方波和3Hz 的锯齿波,因此为了实现频分复用,必须将它们分别调制到不同的频段上去,使它们互不重叠,这样就可以复用同一信道传输,载波频率分别为40Hz,60Hz,80Hz。

沈阳理工大学通信系统课程设计报告

4.3带通滤波器设计

频分多址(FDMA)带通滤波模块如图4.3所示。

图4.3 频分多址(FDMA)带通滤波模块

输入信号分别被调制到40Hz、60Hz、80Hz的频率上。因此前三个模拟滤波器(Analog Filter)的作用是划分信道,将它们各自的频带限制在一定的范围内,避免互相发生混叠。另一方面,添加了高斯白噪声的信号在被解调前必须分离出来,因此后三个模拟滤波器的作用就是分别滤出这三个频段上的信号。这样就能保证各路信号互不干扰。

4.4 FDMA系统框图设计

在发射部分,三个信号发生器,产生正弦信号,方波信号,锯齿波信号,分别进入载频不同的双边带幅度调制模块,然后各自进入与调制模块载频相应的模拟滤波器模块。三路信号在加法器中合成后馈入加性高斯白噪声传输环境。在接受部分,三路并联的和路器分别工作在上述的三个载频上,带通滤波器后面连着载频与带通滤波器中心频率相同的双边带解调模块。解调出信号在和路器中与各自的原始信号汇合,然后进入示波器。

沈阳理工大学通信系统课程设计报告

系统框图如图4.5所示

图4.5 频分多址(FDMA)系统仿真框图

5.仿真

参数设置(例)Signal Generator1

信号发生器参数如图5.1

沈阳理工大学通信系统课程设计报告

调制模块:

DSB AM Modulator passband

DSB AM调制器参数如图5.2 解调模块:

DSB AM Demodulator passband

DSB AM解调器参数如图5.2

沈阳理工大学通信系统课程设计报告

加法器:

List:+++;采样时间;0.002。AWGN通道:Initial seed:67(为初始状态)Variance:0.01。示波器1:

示波器参数如图5.3 频谱仪:

频谱仪参数如图5.4

沈阳理工大学通信系统课程设计报告

数字滤波器例1

数字滤波器参数如图5.5 6.结果分析

各模块组接完成后进行功能仿真得到以下结果 Spectrum Scope(频谱仪)仿真图如图6.1

频谱仪仿真结果图6.1 8

沈阳理工大学通信系统课程设计报告

正弦波信号示波器Scope图形如图6.2

示波器Scope结果图6.2

正弦波的基本波形保持一般,幅度损失严重。方波信号示波器Scope1图形如图6.3

示波器Scope1结果图6.3

由图可以证实方波信号损失严重。主要由于信道被滤波器进行了限制,所以高频分量被滤除。同时方波信号幅度也损失严重。

沈阳理工大学通信系统课程设计报告

锯齿波信号示波器Scope2图形如图6.4

示波器Scope2结果图6.4 锯齿波相较与方波损失较少,但也有明显损失。要使方波或锯齿波损失减小适当扩大通频范围即可,但要注意不要混频。

在本次课设中遇到的难题如图6.5

仿真错误结果图6.5 在本次仿真中开始时候模块设计是参考MATLAB课本,完成以后,仿真失败,进过自己的实验查找,发现DSB AM Demodulator Passband(通带 DSB AM 解调器)无法接收连续信号,所以在其前一端连接一个Zero-Order Hold原件,仿真至此成功。

沈阳理工大学通信系统课程设计报告

7.参考文献

《通信原理》课程教学方法研究 篇7

1. 选用合适的教学方法, 提高教学质量

教学方法是否得当是通信原理教学能否达到预期效果的关键。好的教学方法可以把晦涩难懂的知识讲的深入浅出, 好的教学方法可以提高学生的学习兴趣, 使他们能在学习上得到成就感, 好的教学方法可以调动课堂气氛, 提高教学质量, 因此, 教学方法的选择和运用很重要。

1.1 要注意选择合适的教材和合适的教学参考书

某系所选择的教材是樊昌信主编的《通信原理》第六版, 该教材是普通高等教育“十一五”国家级规划教材, 内容安排合理, 通信理论和通信技术方面论述的非常清晰, 是一门经典的教材。教学参考书选用张辉主编《现代通信原理与技术》, 这两本教材相辅相成, 互相参考学习, 可以达到事半功倍的效果。

1.2 注重课堂教学

在教学中, 对通信原理的基本概念和术语, 通信系统中经常使用的知识和技能要重点讲解, 例如什么是通信、信息, 信息量, 什么是调制和解调等内容一定要讲解清楚, 给出明确的含义不能含糊其辞。另外, 在组织和实施教学中, 针对现在很多学生课后不复习的特点, 课堂上应该带领学生复习前次课的内容, 特别是重要的公式和概念最好板书并讲解, 以此加强学生对上次课内容的印象, 巩固所学知识。

1.3 应以实例教学为模式, 应理论联系实际。

通信基本理论基本概念和现实中的具体实例结合起来更容易理解。例如第一章通信系统模型, 可以和实际通信系统实例进行类比。像电视信号传播系统和电台广播系统, 对信源、发送设备、信道、接收设备及受信者和实际中的系统对应起来, 是学生有更清晰直观的认识, 教学效果更佳。

2. 实现互动教学模式

在各种互动及教学过程中要充分体现学生自身的自主性和参与意识, 认真思考, 积极探究。这种自主探究的学习方式将促进互动的有效展开, 并对培养实践创新能力有很大的帮助。

依据互动教学的理论, 通过教师与学生之间的信息沟通, 实现教学系统的整体优化, 提高教学效果。每个教师在知识结构、智慧水平、思维方式、认知风格、教育教学经验等方面都会存在较大的差异。即使是教授同一课程的教师, 在教学内容处理、教学方法选择、教学整体设计等方面的差异也是明显的。这种差异其实就是一种宝贵的教学资源, 通过教师与教师之间的交流, 可以相互启发、相互补充, 实现思维、智慧的碰撞, 使原有的观念更加科学和完善, 有利于达成教学的目标。另外, 有计划地组织教师开展听课、评课, 使教师看到自己的不足, 反思成败, 博采众长, 有利于更好地把握今后的教学工作, 领悟出更好的教学模式和方法, 实现教师之间的共识、共享、共进。

师生互动是教学过程中最基本, 最常见的互动形式。其实质是师生双方在“教”与“学”的过程中通过教师的启发、引导、激活学生的思维, 学生经过思考、判断、选择接纳教师的影响, 进一步激发教师的积极性的主导意识, 最终达到教学目标。在课堂的教学互动过程中, 教师应努力培养学生参与课堂学习的主动性, 引导学生思考问题, 鼓励学生积极参与, 激活课堂教学, 提高学生学习的自主性, 通过课堂互动, 教师可以了解学生学习课程时难点所在, 教学中可以对这部分内容重点讲解, 教师还可以了解学生急切盼望得到的新知识, 及时补充最新通信理论和通信系统。另外要抓住课外师生间的交流。通信原理是一门理论性、实践性、应用性相当强的课程, 教师在课堂上更多的是理论及原理的介绍和演示, 学生理解、掌握知识必须通过课后的练习及实践, 在这个过程中往往会遇到困难, 如果通过QQ、E-mail、BBS等方式讨论和答疑, 对提高教学效果会有很大的推动作用。

3. 软件实验和硬件实验相结合, 加强实践教学环节

实践教学环节是将知识转化为能力的重要过程, 对培养学生的能力起着重要作用.现在很多高校通信原理实验采取的是硬件实验, 有专门的试验箱和实验台, 可以经通过连线、示波器观察时域波形, 确实可以提高学生的动手能力, 加强对通信系统的感性认识。

对于通信原理这个课程, 有各种各样的基带信号、频带信号, 各种通信系统, 可以通过MATLAB代码进行模拟和仿真, 可以弥补硬件实验较少的不足。也可以让学生掌握MATLAB的操作和编码。通过两种实验相互结合, 可以使学生从理论和实践结合起来, 全面掌握通信技术和知识, 知识掌握的更牢固和合理。

3.1 软件实验

对于软件实验, 在初期的实验课中认真为学生准备实例, 最好配有操作步骤和代码, 使学生读懂代码, 学会MATLAB软件操作, 教师要及时解决实验中出现的问题。这样便于学生掌握一些基本的理论知识, 并逐渐能灵活应用工具。在中后期的上机课中可以由教师为学生拟定题目, 由学生利用前期所学知识, 发挥自己的想象编写代码, 仿真出课堂学习的通信系统和波形。

3.2 硬件实验

硬件实验, 实验课前教师应该把实验指导书发到学生手里, 把实验原理和实验步骤提前预习, 实验课上, 要先对实验台的结构, 实验台的各个模块进行细致的讲解, 特别是信号发生器部分, 怎么调波形, 怎么改变振幅和频率等等。然后对所做实验理论结合实验台进行对比讲解, 最后教师最好先做一次实验演示, 再让学生自己动手操作, 教师在课上及时辅导打印, 可以达到很好的教学效果。

3.3 实验考核

传统的考核方式, 是闭卷考试, 偏重于通信理论, 在实践方面重视不够。要加强学生的理论和实践结合的能力, 需加强实践课的考核, 考核成绩时, 实验课的评分占总成绩的30%, 只有这样加强实验课的力度, 才能提高多媒体教学的质量。为了保障学生在实验室的实际操作效果, 教师应认真耐心地辅导学生, 使学生能够通过完成某个操作来寻找操作的技能与技巧, 最终达到课堂教学与实践教学综合运用的目的。

4. 培养学生自学能力

在当今飞速发展的信息时代, 随着数字通信技术和计算机技术的快速发展以及通信网与计算机网络的相互融合, 信息科学技术已成为21世纪国际社会和世界经济发展的新的强大推动力, 而中间信息的传播与交流, 是依靠各种通信方式和技术来实现的。因此, 对于学生来说, 只有通过自己的不断学习, 不断地知识更新, 才能跟上时代的进步和发展, 这就要求教师在教学过程中, 应在学生认知水平能够承受的前提下安排一些适合自学内容让学生自己学习, 从中培养学生的自学能力。可以安排学生自学一些新技术, 比如WIFI、OFDM、GPS等等。另外还应督促学生认真做好课堂内容的复习和新内容的预习, 最好能给出一些行之有效的学习方法, 比如现在很多学生在学习过程中, 喜欢一个人钻研, 当遇到难点时, 不喜欢问, 这样既花费时间, 又花精力, 可以引导学生学习过程中要加强讨论, 学和问结合起来, 学习效率和学习的乐趣就提高了。在平时学生也会自觉不自觉地会也进行相关知识的学习、探讨, 再经过课堂上的教学及实践练习, 所掌握的操作技术就会更快也更多, 这样也促进了课堂教学, 使得教学效果和教学质量得以提高, 达到预期的教学目标。

5. 结论

通信原理是一门内容不断更新的课程, 教师应跟随现代通信技术的发展变化, 根据学生的实际情况, 在教学中适时改进教学方法, 采用灵活的教学手段, 优选出教学的重点和难点, 认真组织教学内容, 把理论知识和实验操作有效的加以结合, 使操作有理论指导, 同时又能在操作中消化理论。充分调动学生的能动性, 坚持以学生为中心的教学模式, 培养出有创造性, 有学习能力、有良好素质的新一代大学生。

参考文献

[1]樊昌信, 曹丽娜.通信原理第六版[M].北京:国防工业出版社, 2006

[2]张辉, 曹丽娜.现代通信原理与技术[M].西安:西安电子科技大学出版社, 2004

[3]朱颖莉等.《通信原理》课程教学改革探索.南昌高专学报[J], 2011, 1:122-123

《通信原理》课程改革方案分析 篇8

关键词:通信原理 高职高专 课程改革 实践教学

中图分类号:TN911文献标识码:A文章编号:1674-098X(2012)04(a)-0172-01

《通信原理》是現代通信技术的理论基础,也是高职院校通信类专业的必修专业基础课。针对高职高专学生数学功底浅、基础知识欠扎实、自学能力较差等实际情况,如果按照传统以教师为中心、对学生进行知识灌溉的教学模式,强调数学推导和理论分析,势必使学生产生畏难和厌学情绪,难以激发学生的学习兴趣和积极性。

如何将难度系数大、枯燥乏味的理论知识教给、教会学生,做到既避免繁杂的理论推导,又使学生具备基本的理论分析能力和动手能力,是课程教学过程中必须考虑的一个问题。

1 通信原理课程现状

经过多年教学总结,通信原理课程的主要特点如下:

(1)理论性强。主要表现为内容丰富、概念抽象、原理复杂、数学基础要求高;

(2)知识点多。主要包括信号、信源编码、信道、信道编码、调制(模拟、数字)、传输(基带、频带)、解调(模拟、数字)、同步等内容;

(3)逻辑性强。各知识点内容都抽象且枯燥,需要较强逻辑思维能力才能真正理解。

通过多年的教学实践,总结该课程在教学中主要存在以下主要问题。

(1)教学内容系统性差。教学中,一般按照章节内容逐章讲解,由于章节间知识结构联系并不紧密,重点内容欠突出,一般是学到后边忘记前边,因而理论教学效果不佳。

(2)教学方法、手段单一。基本采取传统注入式授课,考虑教学进度多,顾及学生主动性少,导致学生听课积极性不高。

(3)实践教学较为落后。通信原理实验箱可开设实验大部分为验证性实验,且设备易损坏、可维护性、可设计性差,学生仅仅通过波形很难真正理解信息传递的具体过程。

2 课程改革方案

2.1 理论内容改革

教学内容侧重对基本概念的深入理解,对重点内容的强化,对难点问题的剖析,根据教学内容,精心设问,揭示矛盾,以激发学生强烈的求知欲望,培养学生发现问题、分析问题和解决问题的能力,激发学生的学习兴趣和热情。

理论内容在与先修后续课程的协调上引入课程群思想,教学中课程群中的教师互相交流,统一协调,形成一条教学链。将相对独立、分散的知识点系统化,增加模块间的联系,教学内容安排如图1所示。

2.2 实验内容改革

实践教学环节是将知识转化为能力的重要过程,对培养学生的能力起着重要作用。在实践教学方面,通信原理实验一般采用实验箱教学,且大部分是验证性实验,缺乏综合性、创新性内容,影响学生专业动手能力的提高。

实验形式、内容改革主要考虑以下3个方面。

(1)实验教学改革思路

实验教学改革的思路是利用现有比较先进的仪器设备,教师开动脑筋,在验证性实验基础上增加综合性、设计性的项目,逐步开设有创新性的综合性、设计性实验。

(2)实验教学方法的改革

采用以学生为主体的教学方法,强调理论与实践相结合,要求学生自己动手设计实验内容。

(3)实验内容改革

一方面要考虑理论教学的进度及其知识的难点与重点,以利于学生对基本理论、基本原理的掌握,另一方面对原有的实验内容进行筛选、补充、综合,减少验证性实验,增设一些综合性、设计性的实验内容。

2.3 教学方法、手段的改革

根据不同的教学内容和教学对象,可以采用例举法,分类对比法,模型构建思维法,重点精讲、难点突破法。发掘新的教学方法,或者给传统的方法赋予新的生命力。

教学方法的改革是提高教学效果的主要途径。在课程教学过程中采用的教学方法有:

(1)问题教学法

问题教学法是指在课堂教学中,从学生的认知规律和实际出发,科学地设计问题,巧妙地提出问题,启发学生积极思考,通过师生的互动解决学生认识上的错误和模糊观点,然后得出正确的结论。

(2)小组研讨法

小组研讨法是将教学班级分成若干组,并选出每组组长,分别讨论课程中的问题,教师在课程结束之前,须将提出正确的答案并修正讨论过程中的偏差。学生在小组中彼此分享各人的意见与独到的见解,然后作出对该问题的研讨结论,再和其他同学分享。

(3)网上教学交流法

开发网络课程资源,为学生自主学习创造条件设立教学网站,开发网络课程资源,将教学资源放在校园网上,给学生自主学习提供良好的氛围。教学网站建立课程网站,便于学生自学和教师课外辅导,能够实现教师与学生网上教学交流,确保学生能以各种方式和途径进行学习。

3 结语

《通信原理》的特点与高职学生的特点使《通信原理》的教学充满了挑战,在高职培养目标办学理念指引下,本着以学生为主体、教师为主导的教学观念,从课程的教学内容、教学方法、教学手段和实验教学等方面进行了教学改革,形成了通信原理教学的全新模式,促进了教学的深入改革,提高了学生实际动手能力、适应通信新技术发展的能力,较好地解决了传统教学存在的主要问题,取得了较好的教学效果。

参考文献

[1]张辉.现代通信原理与技术[M].西安:西安电子科技大学出版社.2006.

[2]李兆训,李青.构建“通信原理”多元化实践教学体系[J].实验技术与管理,2008,25(5):154~156.

通信原理课程设计46道题目 篇9

通信原理课程设计题目

1、(7,4)汉明码编、译码设计

实现(7,4)汉明码的编码和译码的设计,设计共分为三个模块:m序列产生与分组模块、编码模块、译码模块,实现m序列的分组输出。在MAXPlux II或Quartus II编辑环境下用VHDL文本输入方法编写程序,经编译正确后进行波形仿真、调试,从而验证设计的正确性。

2、数字频带通信系统的建模与设计

任选2ASK、2FSK、2PSK、2DPSK等基本数字频带传输系统的一种,一般要画PCB版图。

3、模拟通信系统的建模与设计

任选AM、DSB、SSB、VSB、FM、PM等基本模拟通信系统的一种,一般要画PCB版图。

4、常用数字通信系统性能研究

对常用数字通信系统(ASK、FSK、PSK)原理及性能进行仿真研究。建立系统模型,并得到仿真波形。通过改变系统模型中的相关参数,分析系统性能。比较三种通信系统在参数改变时性能的差异。

5、常用模拟通信系统性能研究

对常用模拟通信系统原理及性能进行仿真研究。建立系统模型,并得到仿真波形。通过改变系统模型中的相关参数,分析系统性能。比较三种通信系统在参数改变时性能的差异。

6、多通道通信系统的滤波处理

设计目的在于阐述滤波处理在消除频谱泄漏、缩减通道宽度和消除相邻通道间干扰等方面中的重要性。通常,许多数字通信协议的设计是基于保证给每个通道分配一段特定的频率范围为目的,这一实现方式被称为频分复用(FDM)。由于每个通道被指定了一段不同的频率范围,这要求设备在一个通道上发生的信号应当避免对其相邻通道产生干扰。如何使用一脉冲整形滤波器(通常是升余弦滤波器)来限制任一给定通道所占用的频谱。此外,请设计如何在接收端实现一个带通滤波器以消除来自相邻频带的偏移量。

7、伪随机m序列发生器的设计

8、HDB3码编解码器的设计

9、(24,16)CRC循环码编解码器的设计

第1页

通信系统课程设计指导书

10、体系QPSK调制系统设计

211、仿真AWGN信道下的64QAM传输系统,观察接收信号的星座图并统计传输五码符号率。

12、建立一个π/8相位偏移的8PSK传输系统,观察调制输出信号通过加性高斯信道前后的星座图,并比较输入数据以普通二进制映射和格雷码映射两种情况下的误比特率。

13、设数据传输率为Ra=100bps,扩频码片速率为Rc=2000chip/s,Rc/Ra=20,采用m序列作为扩频序列,以BPSK为调制方式。建立扩频系统仿真模型并仿真观察其数据波形、扩频输出波形以及扩频调制输出的频谱。

14、建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据域恢复数据波形,并统计误码率。假设接收定时恢复是理想的。

15、已知输入信号为x(t)=sin2π50t+0.5sin2π150t,增量调制器的采样间隔为1ms,量化阶距为0.4。单位延迟器初始值为0。适用多种不同方法建立仿真模型并求出前20个采样点时刻上的编码输出序列以及解码样值波形。

16、建立一个调频发射机中立体声基带信号的产生模型,并仿真观察其频谱。

17、声音通过FM系统传输的仿真

18、PAM编译码器系统

19、PCM编译码器系统(说明:一般要画PCB版图)20、ADPCM编译码器系统(说明:一般要画PCB版图)

21、增量调制与解调系统(说明:一般要画PCB版图)

22、帧同步提取系统(说明:一般要画PCB版图)

23、位同步提取系统(说明:一般要画PCB版图)

24、载波同步提取系统(说明:一般要画PCB版图)

25、模拟锁相环设计与实现(说明:一般要画PCB版图)

26、QPSK调制与解调(说明:一般要画PCB版图)

27、多进制数字系统的设计

任选一种多进制数字系统(MASK、MFSK、MPSK、MDPSK)进行仿真设计

第2页

通信系统课程设计指导书

28、现代数字系统设计

任选一种现代数字系统,包括MSK、GMSK、QPSK、OQPSK、DQPSK、π/4-DQPSK、QPSK、OQPSK、DQPSK、π/4-DQPSK系统调制和解调。

29、时分复用与解复用系统设计(说明:一般要画PCB版图)30、频分复用与解复用系统设计(说明:一般要画PCB版图)

31、直接扩频系统的设计

32、部分响应系统的设计

33、均衡系统仿真设计(任选一种时域或频域均衡系统)

34、现代数字系统设计

任选一种基于MSK、GMSK、QPSK、OQPSK、DQPSK、π/4-DQPSK调制和解调系统。

35、OFDM系统的仿真设计

36、TurBo码的仿真设计

37、网格编码(TCM)仿真的设计

38、卷积码的设计

39、一种最佳接收机的设计(几种基本最佳接收机中任选一种,一般要画PCB版图)40、常用最佳接收机性能研究

41、数字信号的匹配滤波器设计与仿真

42、CDMA系统仿真设计

43、电话信号的编译码器设计

44、码型变换系统设计

自行设计码型变换电路,包括:NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码中码型变换的一种或几种。

45、锁相式数字频率合成器设计

46、多进制数字调制系统的性能分析

试论通信原理课程教学改革 篇10

一、通信原理课程实训的目的

1、掌握咏冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测置方法。

3、了解脉冲编码调制信号的频谱特性。

4、了解大规模集成电路TP3067的使用方法。

二、通信原理课程实训的内容

通信原理课程实训的内容包括PCM电路图的绘制与PCM电路板的调试与制作两个方面。

1、PCM原理讲解(一天)

2、通信原理PCM电路原理图的绘制与电路板的设计(一天)

3、PCM电路的安装与测试(二天)

4、撰写课程设计论文与答辩(一天)

三、通信原理课程实训的成绩评定

PCM电路图的绘制与PCM电路板的上芯片资料部分的成绩占总成绩的30%,PCM电路的制作与调试部分的成绩占总成绩的30%,课程实训说明书的撰写水平和答辩成绩占总成绩的40%,三部分成绩综合为总成绩。总成绩按优秀、良好、中等、及格与不及格五个等级评定。

成绩评定的依据:

1、实训方案的正确性与合理性;

2、元件的计算与选择的正确性;

3、PCM电路安装与调试能力;

4、课题的完成情况;

5、课程实训过程中的学习态度、工作作风与合作精神。

6、课程实训说明书的撰写水平和答辩成绩;

第一部分 PCM编解码原理

模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能列所发送的抽样准确地估值。如果发

样、量化、编码,最后得到PCM编码信号。在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。具体电路图如图2-1所示。

图2-1 脉冲编码调制电路图

下面对PCM编译码专用集成电路TP3067芯片做一些简单的介绍。图2-2为TP3067的内部结构方框图,图2-3是TP3067的管脚排列图。

(6)Vcc:正电源引脚,Vcc-+5V+5%(7)FSR:接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序列。

(8)DR:接收数据帧输入。PCM数据随着FSR前沿移入DR。

(9)BCLKR/CLKSESL:在FSR的前沿把输入移入DR时位时钟,其频率可以从64KHz至2.048MHz。另一方面它也可能是一个逻辑输入,以此为在同步模式中的主时钟选择频率1.536MHz、1544MHz或2.048MHz,BCLKR用在发送和接收两个方向。

(10)MCLKR/PDN:接收主时钟,其频率可以为1.536MHz、1.544MHz或2.048MHz。它允许与MCLKx异步,但为了取得最佳性能应当与MCLKx同步,当MCLKR连续连在低电位时,CLKx被选用为所有内部定时,当MCLKR连续工作在高电位时,器件就处于掉电模式。

(11)MCLKx:发送主时钟,其频率可以是1.536MHz、1.544MHz或2.048MHz,它允 许与MCLKR异步,同步工作能实现最佳性能。

(12)BCLKx:把PCM数据从Dx上移出的位时钟,其频率可以从64KHz至2.048MHz,但必须与MCLKx同步。

(13)Dx:由FSx启动的三态PCM数据输出。

(14)FSx:发送帧同步脉冲输入,它启动BCLKx并使Dx上PCM数据移出到Dx上。(15)TSx:开漏输出。在编码器时隙内为低脉冲。

(16)ANLB:模拟环路控制输入,在正常工作时必须置为逻辑“O”,当拉到逻辑“l” 时,发送滤波器和发送前置放大器输出的连接线被断开,而改为和接收功率放大器的VPO+输出连接。

(17)GSx:发送输入放大器的模拟输出,用来在外部调节增益。(18)VFxl-:发送输入放大器的倒相输入。(19)VFxIT:发送输入放大器的非倒相输入。(20)VBB:负电源引脚,VBB=-5V+5%。

③异步工作

在异步工作状态中,发送和接收时钟必须独立设置,MCLK和MCLR必须为2.048MHz,只要把静态逻辑电平加到MCLKx/PDN引脚上,就能实现这一点。FSx启动每个编码周期而且必须与MCLKx和BCLKx保持同步。FSR启动每一个译码周期而且必须与BCLKR同步。BCLKR必须为时钟信号。列于表8-4中的逻辑电平对于异步模式是不成立的。BCLKx和BCLKR工作频率可从64KHz变到2.048MHz。④短帧同步工作

COMBO既可以用短帧,也可以用长帧同步脉冲,在加电开始时,器件采用短帧模式。在这种模式中,FSx和FSr这两个帧同步脉冲的长度均为一个位时钟周期。在BCLKx的下降边沿当FSx为高时,BCLKx的下一个上升边沿可启动输出符号位的三态输出Dx的缓冲器,紧随其后的7个上升边沿以时钟送出剩余的7个位,而下一个下降边沿则阻止Dx输出。在BCLKR的下降边沿当FSr为高时(BCLKx在同步模式),其下一个的下降边沿将锁住符号位,跟随其后的7个下降边沿锁住剩余的7个保留位。⑤长帧同步工作

为了应用长帧模式,FSx和FSr这两个帧同步脉冲的长度等于或大于位时钟周期的三倍。在64KHZ工作状态中,帧同步脉冲至少要在160ns内保持低电位。随着FSx或BCLKx的上升沿(无论哪一个先到)来到,Dx三态输出缓冲器启动,于是被时钟移出的第一比特为符号位,以后到来的BCLKx的7个上升沿以时钟移出剩余的7位码。随着第8个上升沿或FSx变低(无论哪一个后发生),Dx输出由BCLKx的下降沿来阻塞,在以后8个BCLKR的下降沿(BCLKR),接收帧同步脉冲FSR的上升沿将锁住DR的PCM数据。⑥发送部件

发送部件的输入端为一个运算放大器,并配有两个调整增益的外接电阻。在低噪声和宽频带条件下,整个音频通带内的增益可达20dB以上。该运算放大器驱动一个增益为l的滤波器(由RC有源前置滤波器组成),后面跟随一个时钟频率为256KHz的8阶开关电容带通滤波器。该滤波器的输出直接驱动编码器的抽样保持电路。在制造中配入一个精密电压基准,以便提供额定峰值为2.5V的输入过载(tmax)。FSx帧同步脉冲控制滤波器输出的抽样,然后逐次逼近的编码周期就开始。8位码装入缓冲器

(4)将信号源模块产生的正弦波信号(频率2.5KH,峰一峰值为3V)从点“S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、“8K”“BS”分别与 模拟信号数字化模块的信号输入点“CLKB-IN”、“FRAMB-IN”、“2048K-IN” 连接,观察信号输出点“PCMB-OUT”的波形。将该点的信号送入频谱分析模块,观察该点信号的频谱,记录下来。

(5)连接“CLKB-IN”和“CLK2-IN”,“FRAMB-IN”和“FRAM2-IN”,连接信号输 出点“PCMB-OUT”和信号输入点“PCM2-IN”,观察信号输出点“OUT”的波形。将该点的信号送入频谱分析模块,观察该点信号的频谱,记录下来。

(6)改变输入正弦信号的幅度,使其峰,峰值分别等于和大于5V(若幅度无法达到5V,可将输入正弦信号先通过信号源模块的模拟信号放大通道,再送入模拟信号数字化模块),将示波器探头分别接在信号输出点“OUT”、“PCMB-OUT”上,观察满 载和过载时的脉冲幅度调制和解调波形,记录下来(应可观察到,当输入正弦波信号幅度大于5V时,PCM解码信号中带有明显的噪声)。

(7)改变输入正弦信号的频率,使其频率分别大于3400Hz或小于300Hz,观察点“OUT”、“PCMB-OUT”,记录下来(应可观察到,当输入正弦波的频率大于3400Hz或小于300Hz时,PCM解码信号幅度急剧减小)。

(8)用单放机或音频信号发生器的输出信号代替信号源模块的正弦波,从点“S-IN”输 入模拟信号数字化模块,重复上述操作和观察并记录下来。(可选)

(9)将信号输出点“OUT”输出的信号引入终端模块,用耳机听还原出来的声音,与单放机直接输出的声音比较,判断该通信系统性能的优劣。(可选)

4、输入、输出点参考说明

(1)输入点参考说明

上一篇:外公去了天堂吗作文下一篇:正大集团价值观心得