等差数列、等比数列综合习题

2024-09-03

等差数列、等比数列综合习题(精选16篇)

等差数列、等比数列综合习题 篇1

一.选择题

1.已知an1an30,则数列an是()

A.递增数列

B.递减数列

C.常数列

D.摆动数列

1,那么它的前5项的和S5的值是()231333537A.

B.

C.

D.

22223.设Sn是等差数列{an}的前n项和,若S7=35,则a4=()2.等比数列{an}中,首项a18,公比q A.8

B.7

C.6

D.5 ,则2a9a10()4.等差数列{an}中,a13a8a15120 A.24

B.22

C.20

D.-8 215.已知数列an中,a11,an2an13,求此数列的通项公式.16.设等差数列

an的前n项和公式是sn5n23n,求它的前3项,并求它的通项公式.5.数列an的通项公式为an3n28n,则数列an各项中最小项是()

A.第4项

B.第5项

C.第6项

D.第7项

2ab等于()

2cd11

1A.1

B.

C.

D.

824a20()7.在等比数列an中,a7a116,a4a145,则a1023232

3A.B.C.或

D.或 

3232328.已知等比数列an中,an>0,a2a42a3a5a4a625,那么a3a5=()6.已知a,b,c,d是公比为2的等比数列,则

A.5

B.10

C.15

D.20 二.填空题

9.已知{an}为等差数列,a15=8,a60=20,则a75=________

10.在等比数列{an}中,a2a816,则a5=__________

11.在等差数列{an}中,若a7=m,a14=n,则a21=__________

12.等差数列{an}的前n项和为Sn,若a3+a17=10,则S19的值_________

13.已知等比数列{an}中,a1+a2+a3=40,a4+a5+a6=20,则前9项之和等于_________

三.解答题

14.设三个数成等差数列,其和为6,其中最后一个数加上1后,这三个数又成等比数列,求这三个数.等差数列、等比数列同步练习题

等差数列

一、选择题

1、等差数列-6,-1,4,9,……中的第20项为()

A、89 B、-101 C、101 D、-89

2. 等差数列{an}中,a15=33,a45=153,则217是这个数列的()

A、第60项 B、第61项 C、第62项

D、不在这个数列中

3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为

A、4 B、5 C、6 D、不存在

4、等差数列{an}中,a1+a7=42,a10-a3=21,则前10项的S10等于()

A、720 B、257 C、255 D、不确定

5、等差数列中连续四项为a,x,b,2x,那么 a :b 等于()

A、B、C、或 1 D、6、已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,……组成一新数 列{Cn},其通项公式为()

A、Cn=4n-3 B、Cn=8n-1 C、Cn=4n-5 D、Cn=8n-9

7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30 若此数列的最后一项比第-10项为10,则这个数列共有()

A、6项 B、8项 C、10项 D、12项

8、设数列{an}和{bn}都是等差数列,其中a1=25,b1=75,且a100+b100=100,则数列{an+bn}的前100项和为()

A、0 B、100 C、10000 D、505000

答案1. A

2、B

3、B

4、C

5、B

6、D 7、A

8、C

二、填空题

9、在等差数列{an}中,an=m,an+m=0,则am= ______。

10、在等差数列{an}中,a4+a7+a10+a13=20,则S16= ______。11. 在等差数列{an}中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,则从a15到a30的和是 ______。

12. 已知等差数列 110,116,122,……,则大于450而不大于602的各项之和为 ______。

三、解答题

13. 已知等差数列{an}的公差d=,前100项的和S100=145求: a1+a3+a5+……+a99的值

14. 已知等差数列{an}的首项为a,记

(1)求证:{bn}是等差数列

(2)已知{an}的前13项的和与{bn}的前13的和之比为 3 :2,求{bn}的公差。

15. 在等差数列{an}中,a1=25,S17=S9(1)求{an}的通项公式

(2)这个数列的前多少项的和最大?并求出这个最大值。

16、等差数列{an}的前n项的和为Sn,且已知Sn的最大值为S99,且|a99|〈|a100| 求使Sn〉0的n的最大值。

答案:

二、填空题

9、n10、80

11、-368 12、13702

13、∵{an}为等差数列∴ an+1-an=d

∴ a1+a3+a5+…+a99=a2+a4+a6+…+a100-50d

又(a1+a3+a5+…+a99)+(a2+a4+a6+…+a100)=S100=145 ∴ a1+a3+a5+…+a99=

=60

14、(1)证:设{an}的公差为d则an=a+(n-1)d

当n≥0时 b n-bn-1=

d 为常数∴ {bn}为等差数列

(2)记{an},{bn}的前n项和分别为A13,B13则,∴{bn}的公差为

15、S17=S9 即 a10+a11+…+a17=

∴ an=27-2n

=169-(n-13)2

当n=13时,Sn最大,Sn的最大值为169

16、S198=(a1+a198)=99(a99+a100)<0 S197=

(a1+a197)=

(a99+ a99)>0

又 a99>0,a100<0则 d<0

∴当n<197时,Sn>0 ∴ 使 Sn>0 的最大的n为197

等比数列

一、选择题

1、若等比数列的前3项依次为A、1 B、C、D、,……,则第四项为()

2、等比数列{an}的公比q>1,其第17项的平方等于第24项,求:使a1+a2+a3+……+an>

成立的自然数n的取值范围。

2、公比为的等比数列一定是()

A、递增数列 B、摆动数列 C、递减数列 D、都不对

3、在等比数列{an}中,若a4·a7=-512,a2+a9=254,且公比为整数,则a12=()

A、-1024 B、-2048 C、1024 D、2048

4、已知等比数列的公比为2,前4项的和为1,则前8项的和等于()

A、15 B、17 C、19 D、21

5、设A、G分别是正数a、b的等差中项和等比中项,则有()

3、已知等比数列{an},公比q>0,求证:SnSn+26、{an}为等比数列,下列结论中不正确的是()

A、{an2}为等比数列 B、为等比数列

C、{lgan}为等差数列 D、{anan+1}为等比数列

7、a≠0,b≠0且b≠1,a、b、c为常数,b、c必须满足()

一个等比数列前几项和Sn=abn+c,那么a、A、a+b=0

B、c+b=0

C、c+a=0

D、a+b+c=0

8、若a、b、c成等比数列,a,x,b和b,y,c都成等差数列,且xy≠0,则 的值为()

A、1 B、2 C、3 D、4

4、数列{an}的前几项和记为An,数列{bn}的前几项和为Bn,已知答案:

一、1、A

2、D

3、B

4、B

5、D

6、C

7、C

8、B 求Bn及数列{|bn|}的前几项和Sn。

二、填空题

1、在等比数列{an}中,若S4=240,a2+a4=180,则a7= _____,q= ______。

2、数列{an}满足a1=3,an+1=-,则an = ______,Sn= ______。

3、等比数列a,-6,m,-54,……的通项an = ___________。

4、{an}为等差数列,a1=1,公差d=z,从数列{an}中,依次选出第1,3,32……3n-1项,组成数

列{bn},则数列{bn}的通项公式是__________,它的前几项之和是_________。

二、计算题

1、有四个数,前三个数成等差数列,后三个成等比数列,并且第一个数与第四个数的和为37,第

二个数与第三个数的和为36,求这四个数。,答案

一、1、6;32、3、-2·3n-1或an=2(-3)n-1 4、2·3n-1-1;3n-n-1

二、1、解:由题意,设立四个数为a-d,a,a+d,则

由(2)d=36-2a(3)

把(3)代入(1)得 4a2-73a+36×36=0(4a-81)(a-16)=0 ∴所求四数为或12,16,20,25。

2、解:设{an}的前几项和Sn,的前几项的和为Tn an=a1qn-1

∵Sn>Tn ∴即>0 又

∴a12qn-1>1(1)

又a172=a24即a12q32>a1q23 ∴a1=q-9(2)由(1)(2)

∴n≥0且n∈N

3、证一:(1)q=1 Sn=na1 SnSn+2-Sn+12=(na1)[(n+2)a1]-[(n+1)a1]2=-a12(2)q≠1

=-a12qn<0

∴SnSn+2

SnSn+2-Sn+12=Sn(a1+qSn+1)-Sn+1(a1+qSn)=a1(Sn-Sn+1)

=-a1a n+1=-a12qn<0 ∴SnSn+2

4、解:n=1

n≥2时,∴

bn=log2an=7-2n

∴{bn}为首项为5,公比为(-2)的等比数列

令bn>0,n≤3

∴当n≥4时,bn〈0

1≤n≤3时,bn〉0 ∴当n≤3时,Sn=Bn=n(6-n),B3=9

等差数列、等比数列综合习题 篇2

解法1等差数列的性质:

Sn, S2n-Sn, S3n-S2n亦成等差数列.

因为2 (S16-S8) =S8+S24-S16,

即2× (392-100) =100+S24-392,

所以S24=876.

解法2等差数列的前n项和公式

设等差数列{an}的首项a1, 公比d,

所以S24=24a1+276d=876.

解法3等差数列求和公式

所以a1+a8=25, a1+a16=49,

因此a1+a24=49+ (49-25) =73,

故S24=12 (a1+a24) =876.

解法5等差数列的前n项和可变式为

可将Sn看成关于n的一元二次函数.

设为Sn=An2+Bn (A, B为常数) ,

代入得S24=876.

总结解法1的运算最简法, 但有局限, 只能解决Sn, S2n, S3n之间的关系.解法2, 3为通用方法, 利用等差数列的求和公式和通项公式, 将条件都转化为a1和d, 一定能解决问题, 有时解方程组计算量较大.解法4利用为新的等差数列, 计算较为简便.解法5是将数列看成特殊的函数, 利用函数的思想来解决.在学习的时候, 尝试一题多解, 根据条件选择“最优解法”.

等差数列、等比数列综合习题 篇3

关键词:递推关系;构造法;等差数列;等比数列

求数列通项公式是高考主要考查的题型之一. 对于等差或等比数列的通项有现成的公式,而对于一个普通的数列,如何求其通项,教材中并没有给出具体的方法. 下面以一道课本习题就通项公式的求解进行拓展探究.

题目 (新课标人教版必修5第54页练习)已知数列{an},a1=1,an+1=,求a5.

递推关系是数列相邻两项之间的关系,即由a1=1可求得a2=,由a2可求a3=,……,以此类推可求得a5=. 若将题目改为求an,又如何求解?

变式1:已知数列{an},a1=1,an+1=,求an.

对于给出递推关系求数列的通项公式问题,我们常用的策略就是构造法,即将一个普通的数列构造为特殊的等差或等比数列,进而求出通项公式.

点评:本题的难点是已知递推关系式中的较难处理,可构建新数列{bn},令bn=,这样就巧妙地去掉了根式,便于化简变形.

综上,由递推关系求数列通项既是高考对数列考查的重点也是难点,难就难在类型多,技巧性强. 处理递推数列问题的基本思想就是对递推式进行变换,通过变换把递推数列问题转化为特殊的数列,即等差数列或者等比数列. 等差数列、等比数列是数列中的最基本也是最重要的形式,必须熟练掌握.

等比数列复习题 篇4

[重点]

等比数列的概念,等比数列的通项公式,等比数列的前n项和公式。1.定义:数列{an}若满足

an

1=q(q0,q为常数)称为等比数列。q为公比。an

2.通项公式:an=a1qn-1(a10、q0)。

na13.前n

4.性质:(man=a2p,(3)记 5a

1和q[难点]

例题选讲1.(湖北),则a

()2.(辽宁),则Sn等于()3.已知a1(1)(2)设(3)记bn=

2,求{bn}数列的前项和Sn,并证明Sn+=1.

anan23Tn1

一、选择题

1.在公比q1的等比数列{an}中,若am=p,则am+n的值为()

n+1n-1nm+n-

1(A)pq(B)pq(C)pq(D)pq

2.若数列{an}是等比数列,公比为q,则下列命题中是真命题的是()(A)若q>1,则an+1>an(B)若03eud教育网 http://教学资源集散地。可能是最大的免费教育资源网!

(C)若q=1,则sn+1=Sn(D)若-1

b9bb9b10

(A)8(B)()(C)9(D)()10

aaaa

4.在2与6之间插入n个数,使它们组成等比数列,则这个数列的公比为

()(A)3(B)1(C)n(D)n

35.若

值为((A)60)

(2){a2n-1的个数为(A)(7a、b((A)8C,则一AC=B2(9.()

(A)10.设n} 中((A(C)至多有一项为零(D)或有一项为零,或有无穷多项为零 11.在由正数组成的等比数列{an}中,若a4a5a6=3,log3a1+log3a2+log3a8+log3a9的值为

43(A)(B)(C)2(D)3

()

4n

112.在正项等比数列{an}中,a1+a2+……an=,则a1+a2+…an的值为

()

(A)2n(B)2n-1(C)2n+1(D)2n+1-

213.数列{an}是正数组成的等比数列,公比q=2,a1a2a3……a20=a50,,则a2a4a6……a20的值为(A)230(B)283(C)2170(D)2102-2()

14.在数列{an}中,a1=2,an+1=2an+2,则a100的值为()

(A)2100-2(B)2101-2(C)2101(D)21

515.某商品的价格前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是()

(A

123.已知…,xn,bK,则45.5a7+2,则实数6.若28在n1.已知等比数列{an},公比为-2,它的第n项为48,第2n-3项为192,求此数列的通项公式。

2.数列{an}是正项等比数列,它的前n项和为80,其中数值最大的项为54,前2n项的和为6560,求它的前100项的和。

3.已知a+b+c,b+c-a,c+a-b,a+b-c成等比数列,且公比为q,求证:(1)q3+ q 2+q=1,a

(2)q=

c

11,从第二项起,{an}是以为公比的等比数列,{an}22的前n项和为Sn,试问:S1,S2,S3…,Sn,…能否构成等比数列?为什么?

4.已知数列{an}满足a1=1,a2=-

5.求Sn=(x+

111)+(x2+2)+…+(xn+n)(y0)。yyy

6.某企业年初有资金1000万元,如果该企业经过生产经营,50%,但每年年底都要扣除消费基金x资金达到2000万元(扣除消费基金后)(精确到万元)。

7.已知数列{an}满足a1=1,a2n比为q的等比数列(q>0),bn=anan+1,cn=a2n-1+a2n,求cn。

8.7m2,1000/ m2,一次性国家财政补贴28800元,学校补贴14400若付107.5%每年复利一次计算(即本年利息计入次年的本息),那么每年应付款多少元?(参考数据:1.0759

1011

1.921,1.0752.065,1.0752.221)

第八单元等比数列

一、选择题CDACABCDBDABABD

二、填空题 1.

12.50,10,2或2,10,50 3.ab

k7k27

4.05.9简解:a3+a9=-,a3a9=a5a7=-,∴(-)=3×+2k=933336、1Ar(1r)n

7.2248、n

(1r)

2二、解答题

n

1①ana1(2)48n-1n-1

1.解得a=3(-2)。1=3 ∴an=a1q2n

4192②a2n3a1(2)

a1(1qn)

①80

2.∵

n项中又由3.(a

 c

4.当当当n1(11212S

1n-1n1

∴Sn=()Sn

1()n

{S}可以构成等比数列。

n1n1

2()25、当x1,y1时,11(1)nnyx(1x)xxn11yny1112n

n∴Sn=(x+x+…+x)+(+)= n

111x1xyy2ynyy1

y

1yn

当x=1,y1时Sn=n+n n1

yy

xxn1

n 当x1,y=1时Sn=

1x

当x=y=1时Sn=2n

6.设an表示第n年年底扣除消费基金后的资金。

a1=1000(1+)-x

21111

a2=[1000(1+)-x](1+)-x=1000(1+)2-x(1+)-x

a3类推所得a5则1000,解得x

7、∵bn+1由a1=1,a由a2=r,a∴Cn8依次类推第n则各年付款的本利和{an}为等比数列。

x(11.07510)

元。∴10年付款的本利和为S10=

11.075

个人负担的余额总数为72×1000-28800-14400=28800元。10年后余款的本利和为18800×1.07510

11.07510288001.075100.07510

288001.075解得x=4200元 ∴x10

等差数列练习题 篇5

甲、乙二人是朋友,他们都住在同一条胡同的同一侧,甲住11号,乙住189号。甲、乙二人的住处相隔几个门?

答案

甲、乙二人的家之间所有的门牌号组成了一个等差数列:11、13、15、17、……、189。它的首项a1=11,公差d=2,末项an=189。这串数列的项数,可由等差数列通项公式的变形公式求出:n=(an-a1)÷d+1=(189-11)÷2+1=89+1=90由此可知,从门牌11号到189号共有90个门牌号,所以甲、乙二人住处相隔90-2=88个门。

奥数等差数列练习题 篇6

1.一个剧场设置了22排座位,第一排有36个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位?

2.自1开始,每隔两个数写一个数来,得到数列:1,4,7,10,13,….,求出这个数列前100项只和?

3.影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位。最后一排有94个座位。问这个影剧院共有多少个座位?

4.小张看一本故事书,第一天看了25页,以后每天比前一天多看的页数相同,第25天看了97页刚好看完。问:这本书共有多少页?

5.已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,….,这个数列的第30项是哪个数字?到第25项止,这些数的和是多少?

植树问题

1.在一段公路的一旁栽95棵树,两头都栽,每两棵树之间相距5米,这段公路长多少米?

2.有三根木料,打算把每根锯成3段,每锯开一处,需要3分钟,全部锯完需多少时间?

高考数列综合题例析 篇7

一、与解几结合

例1设P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2构成了一个公差为d(d≠0)的等差数列,其中O是坐标原点.记Sn=a1+a2+…+an.

(1)若C的方程为,n=3.点P1(10,0)及S3=255,求点P3的坐标;(只需写出一个)

(2)若C的方程为(a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值;

(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1,P2,…,Pn存在的充要条件,并说明理由.

分析:该题的主要条件是长度的平方成等差数列,并且点在二次曲线上,又给出前n项和的记法,在形式上或第一印象给人无法下手的感觉,也就是将条件发散开来后后续手段不多.这时不要慌,要静下心来看看接下来的各小问是将条件向哪个方向发展的.

(1)明确了C的方程,给出点P1及S3,求P3.

由P1为(10,0),得a1=100.

又由,得a3=70,即|OP3|2=70.

所以P3的坐标可以为

数列在这里仅仅起到了由|OP1|2=100得到|OP3|2=70作用,其余是解析几何中求交点问题,分开来看都是常规问题,容易题,合起来就“吓到”了一批学生.总结一下解这类题应注意以下三点:一是心要静,二是基础知识要扎实,三是要会庖丁解牛.

(2)有了(1)的顺利解决,解答(2)的信心随之而来.注意主要条件“n给定的自然数,d是变量”,这又是一个反常规的问题,经常练习的是Sn是关于n的函数,这里要考虑的是Sn关于d的函数,熟悉中考查陌生.

,n,a都是已知的常数,所以Sn是d的一次函数,要求Sn的最值只需求出d的范围,所以求d的范围就成了解决这个问题的关键.

思考还要从an的范围开始,.

又因n≥3,所以Sn有最小值

本小题更强调函数的思想,数列成为一个工具.

(3)不妨选双曲线,P1也选为右顶点(a,0).

分析题意P1,P2,…,Pn存在即a1,a2,…,an存在,首项和项数已知,要想确定数列a1,a2,…,an只要确定公差d,所以本题是要我们求d的范围,而求d的范围关键又是an的范围.

,因,所以an=|OPn|2≥a2.即an=a2+(n-1)d≥a2,所以d>0.反过来只要d>0,|OPn|2(n∈N+)存在,即Pn(n∈N+)存在.

所以P1,P2,…,Pn存在的充要条件是d>0.

注意:这里d的范围与P1选择有关.

二、与函数结合

例2已知函数f(x)=a×bx的图象过点和B(5,1).

(1)求函数f(x)的解析式;

(2)记an=log2f(n),n是正整数,Sn是数列{an}的前n项和,解关于n的不等式anSn≤0;

(3)对于(2)中的an与Sn,整数96是否为数列{anSn}中的项?若是,则求出相应的项数;若不是,则说明理由.

又因为anSn≤0得(n-5)(n-9)≤0,即5≤n≤9.

故n=5,6,7,8,9.

(3)a1S1=64,a2S2=84,a3S3=72,a4S4=40.

当5≤n≤9时,anSn≤0.

当n≥10时,anSn≥a10S10=100.

因此,96不是数列{anSn}中的项.

分析:此题前两问都很简单,所用知识基础,只是涉及章节较多,有函数、数列、不等式;形式上较复杂,特别是方程中出现了bx,通项an是f(x)的对数,不等式是an与Sn的积不大于零,正所谓“小综合+新形式”,看起来繁(烦)做下去不难.第3问是要发挥同学创造力进行探索估算证明的,直接解方程2n(n-5)(n-9)=96,求解后看其有没有正整数根,一不会二不可取.

事实上,认识到5≤n≤9时anSn≤0,然后分段讨论是关键.n≤4时逐项验证,n≥10时,利用不等式的性质易得anSn≥a10S10.进而得到结论.

三、与不等式结合

例3已知{an}是首项为2,公比为的等比数列,Sn为它的前n项和.

(1)用Sn表示Sn+1;

(2)是否存在自然数c和k,使得成立.

分析:(1)本题属基本题,所用基础知识——等比数列前n项和公式,基本技能——幂的运算能力、消元或凑配变形能力.

由已知可得

(2)是一道存在探究问题.解决这类问题的基本办法是:首先假设参数存在,然后对所要满足的条件进行等价变形,使其更明朗化,接着或构造出参数满足条件,或推出矛盾得到参数不存在.

由(1)可等价变形为,进一步化简得到

因c和k都是自然数,所以4-c和2k-1都是整数,所以(4-c)2k-1是整数又因为在2和3之间不存在整数,所以满足条件自然数c和k不存在.

本题更强调的是等价转化和整体代换(解不等式时将(4-c)2k-1看做一个整体)的思想,数列只是形式和载体.

四、应用建模

例4某企业2010年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为(n为正整数).

(Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式;

(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?

分析:本题是实际应用问题,困难在与将文字语言转化为数学语言,建立数学模型!困难有三,一、关键词提取,二、信息梳理,三、语言数学化.解决本题首先要提取两条主要信息链,不进行技术改造的利润与进行技术改造的利润.

不进行技术改造情况,信息提取:2010年纯利润500万元;今年起逐年减少20万元;何题是求前n年累计纯利润,记为An万元.数学化:设今年起第n年纯利润为an万元,则a1=500-20,{an}成等差数列,公差d=-20,{an}的前n项和为An,计算可得1)d=490n-10n2.

进行技术改造的情况,信息提取:2010年纯利润500万元;今年一次性投入改造资金600万元;第n年的利润为万元(未扣除技术改造资金);问题仍是求前n年累计纯利润(须扣除技术改造资金),记为Bn万元.数学化:设,Bn与{bn}的前n项和有关.事实上.

得到An与Bn后问题(Ⅱ)就是一个纯数学问题了.

因为函数在(0,+∞)上为增函数,

当1≤n≤3时,

当n≥4时,-10>0.

所以当且仅当n≥4时,Bn>An,所以至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.

注意,不等式An-Bn>0的解是利用n为正整数进行估算得到的.

五、数列内部整合

例5已知数列{an}中a1=1,且a2k=a2k-1+(-1)k,a2k+1=a2k+3k,其中k=1,2,3,….

(Ⅰ)求a3,a5;

(Ⅱ)求{an}的通项公式.

分析:本题可看做是等差数列的变式,做了两项处理,一、从第二项起每一项与其前一项的差不再是同一常数,二、偶数项与其前一项的差与奇数项与其前一项的差的表达式不同,问题是求通项公式.与等差数列定义相比有一点没有变化,就是都是给出相邻两项差来确定的数列,所以不难想到等差数列求通项公式的办法——“累加法”应该仍适用本题.

(Ⅰ)由已知条件知a2k+1=a2k-1+3k+(-1)k,所以a3=3,a5=13.

(Ⅱ)由于数列递推公式给出形式就分奇偶,所以求通项公式时也理应想到对n分奇偶来求.

等差数列、等比数列综合习题 篇8

一、准确把脉高考,吃透题型

数列与不等式的综合问题是近年来高考的一个热点,也是一个难点.

高考试题中这类试题通常考查到什么程度?

纵观这几年的高考,对数列方面的考查多属基础知识和基本技能的层级,而对不等式的考查,其中口径往往比较宽,难度的调控幅度比较大,有时达到很高的层级.从高考试题的排序来看,这类问题通常比较靠后,试题的综合程度有时不大,有时很大,既有中低档次的题目,又有中高档次的题目,而且多数年份属于后者,即常以“难题”的面貌出现,对综合能力的考查深刻.

这类试题的考试形式和考查的重点在哪里呢?

这类试题,时常以递推关系或间接的形式设定数列,对数列的提问,多涉及通项、前n项和或数列中的某些指定的参数,有时也会涉及多个数列.至于有关不等式的提问,可以是含变量n或其他参变量的不等式的证明或求解,亦或者是求某些量的取值范围,或者是不同量间的大小比较,等等.

从数学思想方法来看,对数列不等式综合题的解答,往往要求能够熟练应用相关的基础知识和基本技能,同时还应具备比较娴熟的代数变换技能和技巧.

等差数列、等比数列综合习题 篇9

【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)

1.等差数列{an}前四项和为40,末四项和为72,所有项和为140,则该数列共有()A.9项 B.12项 C.10项 D.13项 【答案】C 【解析】∵a1+a2+a3+a4=40, an+an-1+an-2+an-3=72.∴a1+an=4072=28.4又n(a1an)=140, 2故n=10.*2.给出下列等式:(ⅰ)an+1-an=p(p为常数);(ⅱ)2an+1=an+an+2(n∈N);(ⅲ)an=kn+b(k,b为常数)则无穷数列{an}为等差数列的充要条件是()A.(ⅰ)B.(ⅰ)(ⅲ)C.(ⅰ)(ⅱ)D.(ⅰ)(ⅱ)(ⅲ)【答案】D

2【解析】易知三个都是,另外还有一个常见的是{an}的前n项和Sn=an+bn,(a,b为常数).3.等差数列{an}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于()A.66 B.99 C.144 D.297 【答案】B 【解析】a1+a4+a7=39a4=13,a3+a6+a9=27a6=9,S9=9(a1a9)9(a4a6)=99.224.等差数列{an}的公差为d,前n项的和为Sn,当首项a1和d变化时,a2+a8+a11是一个定值,则下列各数中也为定值的是()

A.S7 B.S8 C.S13 D.S15 【答案】C 【解析】因a2+a8+a11=3a7,故a7为定值.又S13=13(a1a13)=13a7, 2∴选C.5.已知数列{an}中,a3=2,a7=1,又数列{

1}是等差数列,则a11等于()an1A.0 B.【答案】B C.D.-1 23-1

值为_________________.【答案】5 【解析】当x1+x2=1时,f(x1)+f(x2)4x14x224x1x22(4x14x2)=x=1.x2x1x2x1x2142424(44)241210)+f()+…+f(),倒序相加有 ***S=[f()+f()]+[f()+f()]+…+[f()+f()]=10.111111111111设S=f(即S=5.10.数列1,2+3,4+5+6,7+8+9+10,…,的一个通项公式an=__________________.n(n21)【答案】

2【解析】前n项一共有1+2+3+…+n=

n(n1)n(n1)个自然数,设Sn=1+2+3+…+n=,则 22an=Sn(n1)Sn(n1)22n(n1)n(n1)n(n1)n(n1)[1][1]n(n21)2222.22

2三、解答题(11—13题每小题10分,14题13分,共43分)

11.{an}是等差数列,公差d>0,Sn是{an}的前n项和,已知a2a3=40,S4=26.(1)求数列{an}的通项公式an;(2)令bn=1,求数列{bn}的所有项之和T.anan14(a1+a4)=2(a2+a3)=26.2【解析】(1)S4=又∵a2a3=40,d>0,∴a2=5,a3=8,d=3.∴an=a2+(n-2)d=3n-1.(2)bn=11111()=anan1(3n1)(3n2)33n13n2***n]().3(n1)3n2323n22(3n2)Tn=[()()2

2113212.已知f(x)=x-2(n+1)x+n+5n-7,(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;(2)设f(x)的图象的顶点到x轴的距离构成{bn},求{bn}的前n项和.2(1)证明:f(x)=[x-(n+1)]+3n-8, ∴an=3n-8.∵an-1-an=3, ∴{an}为等差数列.

∴a1=22a1-2,解得a1=2.当n=2时,有a2=22S2-2,S2=a1+a2, 将a1=2代入,整理得(a2-2)=16, 由a2>0,解得a2=6.当n=3时,有a3=22S3-2,S3=a1+a2+a3, 将a1=2,a2=6代入,整理得(a3-2)=64, 由a3>0,解得a3=10.所以该数列的前三项分别为2,6,10.(2)由an=22Sn-2(n∈N),整理得Sn=

*

习题课1—数列极限2009 篇10

第一次习题课(数列极限)

一、内容提要

2n2121.数列极限定义,验证limn3n22n13.2.极限性质(唯一性、有界性、保号性、保不等式).3.极限四则运算.求limn1nn

2n(n),limn(1nn2)

4.收敛准则(迫敛准则、单调有界准则、柯西收敛准则).二、客观题

1.设f(x)1,x

1x1,则ff(x)___________.0,2.若数列{xx

n}与{yn}发散,问数列{xnyn},{xnyn},{n

y}是否一定发散?

n

3.若数列xn收敛,列yn发散,则数列xnyn是否存在?

4、若单调数列{an}含有一个收敛的子数列,则数列{an}必收敛().5、若数列{an}发散,则{an}必为无界数列().6.当()时,有lim(k

n1n)ne.三、计算题

1.一些重要结论:

lim(n1n

nn)e,limn(n1n)ne1,limnqn0,(|q|1),limna1,(a0),limnn21.2.计算下列极限

(1)limsinn

nn0(M).(2)lim

1n(2n1n2n2n2)2(求和法).(3)lim(1

nn21

2n2n

2n2n)(夹逼).(4)limn(113n1nn2),(4)limn(1n2).(5).设f(x)axa0,a1,求lim1

nn2lnf(1)f(2)f(n).1limnn1,《数学分析I》第1次习题课教案 xn1ann!(6)设xn,求极限.limnnnxn

四、证明题

1.已知limana,证明极限limn[nan]a.nn1

cos1cos2cosn2n,(n1,2,,)是收敛数列.2222..应用柯西收敛准则,证明an

3.设x1a0,xn112(xn),证明:数列{xn}收敛并求其极限(单调有界原理).2xn

n4.按数列极限的N定义证明limn22n210.anbnn1,2,,试证明数列{an},bn1anbn,25.给定两个正数a1与b1(a1b1),我们令an1

与{bn}的极限皆存在,并且limanlimbn.nn

等差数列、等比数列综合习题 篇11

1.学习一个数学公式的基本任务有哪些?

(1)等差数列、等比求和公式内容是什么?公式怎么用?

(2)推导公式的方法怎么用?

2.拿到一个新题目怎么想?

(1)现有的相关公式能否用上?

(2)非等差、等比数列求和能否化为等差、等比数列求和?

(3)已经用过的相关方法能否用上?

问题一:求数列,,,…,,…的前n项和;

分析:数列的分子成等差数列,分母成等比数列,可用错位相减法求和;

Sn=+++…++其中等比数列的公比q=;

Sn=+++…++;

两式错位相减得:

Sn=++++…-

=-+2(++++…+)-

∴Sn=3-

小结:设数列an的等比数列,数列bn是等差数列,则数列anbn的前n项和Sn求解,均可用错位相减法.

问题二:已知a≠0,求数列a,2a2,3a3,…,nan,…前n项和.

点拨:字母的系数等差,字母项等比,但需要对字母讨论.

解:Sn=a+2a2+3a3+…+nan,

当a=1时,Sn=1+2+3+…+n=,

当a≠1时,Sn=a+2a2+3a3+…+nan,

aSn=a2+2a3+3a4+…+nan+1,

两式相减(1-a)Sn=a+a2+a3+…+an-nan+1,

=-nan+1

∴Sn=.

小结:采用乘公比,错位相减,可以得到一组等比数列,求和用公式但必须注意公比是否为1,否则须讨论.

问题三:设Sn=-1+3-5+7-9+…+(-1)n(2n-1),则Sn=(-1)nn

方法一:分析:由此数列的通项an=(-1)n(2n-1);其是等差数列与等比数列的积这一类型的数列求和,故用错位相减法.

所以Sn=-n(n为奇数)

n(n为偶数),即Sn=(-1)nn.

总结:一个数列cn可以看成是一个以公差为d的等差数列(d不等于零)和一个是公比为q的等比数列(q不等于1)的乘积形式,则数列cn的前n项求和的方法可采用做错位相减法.

方法二:分析:通过观察可发现此数列具有正负相间,且正数项和负数项分别成等差数列这一特征.因此可以将正数项和负数项分别进行分组求和.但此数列有多少正数项和负数项呢?还要对项数n的奇偶性进行讨论.

略解:Sn=-n(n为奇数)

n(n为偶数),即Sn=(-1)nn.

总结:我们通过分组转化成两个等差数列,然后通过已有的等差数列求和求解。这种方法叫做分组求和法。

方法三:分析:通过观察可发现此数列具有这样的特征,即第一项与第二项,第三项与第四项,第五项与第六项,……,第n-1项与第n项的和都等于2,共多少个2呢?还要对项数n进行奇偶性讨论.

总结:通过将数列相邻的两项并成一项得到一个新的容易求和的数列,这种方法叫做并项求和。

通过对以上问题几种方法的探讨,不难看出,实际上所有与项的序号的奇偶性有关的数列求和问题,通过认真审题,抓住数列的通项,灵活地运用分类讨论、转化和化归数学思想,就可将其变为熟悉、简单的等差数列或等比数列来处理,辅助以适当的解题方法技巧,问题就会迎刃而解.

等差数列与等比数列的类比 篇12

1. 本课是在学习了类比推理这一内容后的探究课, 学生在高一已经学习过等差数列与等比数列, 但是肯定会遗忘较多的内容。教师首先安排复习等差数列的定义及简单的性质, 使学生利用类比的方法来复习等比数列, 在这个过程中体会“差与比, 加与乘, 乘与乘方, 除与开方”的类比, 从而为后面的学习打下了基础。

2. 类比推理的方法对学生来说是比较难的, 很多学生不知道从何处去类比, 数列是一个比较好的题材, 通过有关问题的解决, 既加深了对等差数列与等比数列的认识, 又让学生对类比的方法、实质有所体验, 还可让学生体验“大胆猜想——小心论证”的严谨的数学发现历程。

二、案例内容

1. 设置情境。

展示图片 (李四光的照片) , 回顾李四光发现大庆油田的过程:

中亚西亚与松辽平原有着极其相似的地质结构, 因为中亚西亚有大量的石油, 于是他推测松辽平原也有大量的石油。后来经过勘探, 发现了大庆油田。

提问:李四光这种思维方式蕴含了哪种推理方法?

学生:类比推理。

通过上述的情境设置, 很自然地引入本节课的课题, 又可以帮助学生更好地理解类比推理的概念。根据奥苏伯尔的有意义学习理论, 学生在概念学习时, 原有认知结构中是否有用来同化新知识的适当观念是决定数学概念能否顺利掌握的关键因素。如果学生头脑中没有适当的知识作为理解新概念的固定点, 那么原有认知结构的扩充和新概念结构的建立就不可能发生。经过情境设置展现了原有知识结构, 使学生对概念的认识更加深刻。

2. 复习回顾等差数列与等比数列 (设置如下表格)

在上述问题中, 可以先一起复习等差数列, 让学生利用类比的思想自行得出等比的相关概念。通过这一回顾, 使学生体会到等差数列和等比数列在概念形式上的相似之处。

3. 运用类比推理进行探究。

在认识了运用类比推理进行探究的方法之后, 教师设置了如下若干性质探究的问题供学生思考。

[问题1]在等差数列{an}中, 若a10=0, 则有a1+a2+…+a7=a1+a2+…+a12, 类比上述性质, 在等比数列{bn}中, 若b10=0, 则有__________。

问题1让学生来类比等比数列中相应的性质, 并加以证明。一方面从形式上可以帮助学生进一步体会等差与等比性质中“和与积”的类比, 另一方面, 从证明方法上也进行类比证明。这样的问题, 在学生理解性质后, 初步体验了发现问题并解决问题的“类比”方法。

接着, 进行如下变式练习:

等差数列{an}中, 若a10=0, 则有a1+a2+…+an=a1+a2+…+a19-n, 类比上述性质, 在等比数列{bn}中, 若b9=1, 则有__________。

启发引导学生如何通过类比得到正确结论, 使学生经历运用类比思想方法研究数列问题的过程。

[问题2]已知等差数列{an}的前n项和为, 用类比的方法, 写出等比数列{bn}的前n项积的表达式Tn=________。

[问题3]等差数列有如下性质:若数列{a n}为等差数列, 则当时, 数列{bn}也是等差数列;类比上述性质, 相应地, 若数列{cn}是正项等比数列, 当dn=_______时, 数列{dn}也是等比数列。

通过上述两个问题, 让学生进一步体会“加、减、乘、除”依次变成“乘、除、乘方、开方”的变换。

[问题4]若{a n}为等差数列, 则{an+1+a n}也成等差数列。由此经过类比, 若{b n}为等比数列你能得到什么结论?

在教学过程中发现, 有近85%的学生最初得到了{bn+1·bn}也为等比数列, 并能给予“证明”。看来学生对于“和”与“积”的类比已经掌握的比较好了, 但是个别学生得出{bn+1+bn}为等比数列。这时教室出现了两种不同的声音, 下面是一段课堂实录:

生1:我判断并证明了等比数列的和“{bn+1+bn}”仍然是等比数列, 且公比为数列{bn}的公比。

(师环视四周, 似乎每个人都投以赞同的目光, 并且频繁点头表示同意。)

生2:我有点不同意 (全班只有他一人有不同意见) , 我觉得, 对数列-1, 1, -1, 1, …这个数列来说, 其和不是等比数列。

(此时全班恍然。)

师:我们来看一下生1的证明过程 (投影仪) :

∴{an+1+an}是等比数列。你们看证明过程严密吗?

生3:当q=-1时, 他的第二步不成立。 (此时同学们又都给予肯定。)

师:答得好。本来我们不知道这一反例, 但在证明过程中发现了问题的存在, 由此找到了反例, 说明同学们在发现问题时, 能够进行大胆猜想、小心论证的严密的科学态度。

师:学到这里, 你有什么样的感受呢?

生4:在等差数列和等比数列的类比中, 我发现除了形式上存在着类比之外, 正确的要加以证明, 错误的可以举出反例。

生5:我感到就算是类比的结论在形式上未必一致, 但证明方法有相似之处。

这番交流的过程中, 学生的思维几经“冲浪”辗转, 他们的好奇心和探索热情已被唤起, 严谨的数学发现历程正在探索中内化着。

[问题5]若Sn是等差数列{an}的前n项和, 则Sk, S2k-Sk, S3k-S2k也是等差数列。在等比数列中是否也有这样的结论?为什么?

由于上一个题的反例的启发, 学生可以找到反例从而得出Sk, S2k-Sk, S3k-S2k不成等比数列的结论, 也有同学得出成等比数列的结论, 这是受通项之间的类比的影响导致的。经过讨论, 对结论进行论证, 反驳, 同学们进一步指出“成等比数列”的说法虽然不对, 但在“类比——发现”的探究过程中也有不少新的收获, 教师顺势提出开放性的问题:如何改动使得结论能够成立 (用St构造一个等比数列) ?这个过程, 将“类比——发现——自悟”方式的核心——学生在思维上经过反复的类比、验证, 自我领悟并掌握类比的思想方法, 体现在了教学过程中。

三、案例反思

为将“类比——发现——自悟”的方式更加清晰地在教学中体现, 教师的教学设计应向更加注重思维方式转变。设计的数学问题关注一题多变、多题环环相扣的连锁关系, 同时体现思维“严密性”, 并且搭建脚手架, 帮助学生努力实现“发现——自悟”的过程。

在实施教学的过程中, 努力让学生体验:从形式上得到类比的特征, 从本质上体验思维的过程, 了解类比不仅是形式上的“相似”, 而是从相似中得到猜想, 再由论证使之成为正确的类比。这样的教学方式, 有利于激发学生的思维, 使学生在辩证思维中掌握类比的思想方法。

高考文科数学数列复习题有答案 篇13

一、选择题

1.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()

A.5 B.4 C.3 D.2 2.在等差数列an中,已知a12,a2a313,则a4a5a6等于()A.40

B.42

C.43

D.45 3.已知等差数列an的公差为2,若a1、a3、a4成等比数列,则a2等于()A.-4 B.-6 C.-8 D.-10 4.在等差数列an中,已知a11n为()3,a2a54,an33,则A.48 B.49 C.50 D.51 5.在等比数列{an}中,a2=8,a6=64,则公比q为()

A.2 B.3 C.4 D.8 6.-1,a,b,c,-9成等比数列,那么()

A.b3,ac9 B.b3,ac9 C.b3,ac9 D.b3,ac9 7.数列an满足a1,anan1n(n2),则an()

A.n(n1)2n(n1)2 B.C.(n2)(n1)2 D.2(n1)(n1)2

8.已知a,b,c,d成等比数列,且曲线yx2x3的顶点是(b,c),则ad等于(A.3 B.2 C.1 D.2 9.在等比数列an中,a12,前n项和为Sn,若数列an1也是等比数列,则Sn等于()

n2 B.3n C.2n D.31

10.设f(n)2242721023n10(nN),则f(n)等于

A.2n1()A.2n22(81)

B.(8n11)

C.(8n31)777D.

2n4(81)7

二、填空题(5分×4=20分)

11.已知数列的通项an5n2,则其前n项和Sn.

*12.已知数列an对于任意p,qN,有apaqapq,若a11,则a36 9

13.数列{an}中,若a1=1,2an+1=2an+3(n≥1),则该数列的通项an=.14.已知数列an是首项为1,公差为2的等差数列,将 数列an中的各项排成如图所示的一个三角形数表,记 A(i,j)表示第i行从左至右的第j个数,例如A(4,3)=a9,则A(10,2)=

三、解答题(本大题共6题,共80分,解答应写出文字说明、证明过程或演算步骤)

15、(本小题满分12分)

等差数列的通项为an2n19,前n项和记为sn,求下列问题:(1)求前n的和sn(2)当n是什么值时,sn有最小值,最小值是多少?

16、(本小题满分12分)

数列an的前n项和记为Sn,a11,an12Sn1n1(1)求an的通项公式;(2)求Sn

17、(本小题满分14分)

已知实数列{an}是等比数列,其中a71,且a4,a51,a6成等差数列.(1)求数列{an}的通项公式;(2)数列{an}的前n项和记为Sn,证明:Sn<128(n1,2,3,…).18、(本小题满分14分),2,3,),且a1,a2,a3成公比不数列an中,a12,an1ancn(c是常数,n1为1的等比数列.

(1)求c的值;

(2)求an的通项公式.

19、(本小题满分14分)

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1b11,a3b521,a5b313

(1)求{an},{bn}的通项公式;

(2)求数列an的前n项和Sn bn2n120.(本小题满分14分)

设数列an满足a13a23a3…3(1)求数列an的通项;(2)设bn

1.(本题满分14分)设数列an的前n项和为Sn,且Sn4an3(n1,2,),ann*,aN. 3n,求数列bn的前n项和Sn. an(1)证明:数列an是等比数列;

(2)若数列bn满足bn1anbn(n1,2,),b12,求数列bn的通项公式. 2.(本小题满分12分)

等比数列an的各项均为正数,且2a13a21,a329a2a6.1.求数列an的通项公式.2.设bnlog3a1log3a2......log3an,求数列3.设数列an满足a12,an1an322n1(1)求数列an的通项公式;(2)令bnnan,求数列的前n项和Sn

4.已知等差数列{an}的前3项和为6,前8项和为﹣4.

(Ⅰ)求数列{an}的通项公式;

﹣(Ⅱ)设bn=(4﹣an)qn1(q≠0,n∈N*),求数列{bn}的前n项和Sn. 5.已知数列{an}满足,(1)令bn=an+1﹣an,证明:{bn}是等比数列;(2)求{an}的通项公式.,n∈N×.

1的前项和.bn

高三文科数学数列测试题答案 1~5 CBBCA 6~10 BABCD 11.n(5n1)1 12.4 13.an3 14.93 2n22an0915.略解(1)略(2)由得n10,s1010(17)1022260

a0n116.解:(1)设等比数列an的公比为q(qR),由a7a1q61,得a1q6,从而a4a1q3q3,a5a1q4q2,a6a1q5q1. 因为a4,a51,a6成等差数列,所以a4a62(a51),即q3q12(q21),q1(q21)2(q21).

11所以q.故ana1qn1q6qn16422n1.

1n641n1n2a1(1q)(2)Sn1281128

11q21217.(1)由an12Sn1可得an2Sn11n2,两式相减得an1an2an,an13ann2 又a22S113∴a23a1故{an}是首项为1,公比为3得等比数列∴an3n1.(2)Sn1(13n)13321 2 n

18.解:(1)a12,a22c,a323c,因为a1,a2,a3成等比数列,所以(2c)2(23c),解得c0或c2.

当c0时,a1a2a3,不符合题意舍去,故c2.(2)当n≥2时,由于 a2a1c,2a3a22c,

anan1(n1)c,n(n1)c. 2又a12,c2,故an2n(n1)n2n2(n2,3,). 所以ana1[12(n1)]c当n1时,上式也成立,所以ann2n2(n1,2,).

412dq21,19.解:(1)设an的公差为d,bn的公比为q,则依题意有q0且 214dq13,解得d2,q2.

所以an1(n1)d2n1,bnqn12n1.

a2n1(2)nn1.

bn2352n32n1Sn112n2n1,①

222252n32n12Sn23n3n2,②

2222222n1②-①得Sn222n2n1,222212n1112212n2n1

222211n12n32n1222n16n1. 12212n2n120.(1)a13a23a3...3an,3n1a13a232a3...3n2an1(n2),1.解:(1)证:因为Sn4an3(n1,2,),则Sn14an13(n2,3,),所以当n2时,anSnSn14an4an1,整理得an 4an1. 5分 3 由Sn4an3,令n1,得a14a13,解得a11. 所以an是首项为1,公比为

4的等比数列. 7分 3(2)解:因为an()43n1,由bn14n1bb(). 9分 anbn(n1,2,),得n1n3 由累加得bnb1(b2b`1)(b3b2)(bnbn1)

41()n1433()n11,(n2),=24313 当n=1时也满足,所以bn3()43n11.

22322.解:(Ⅰ)设数列{an}的公比为q,由a3所以q9a2a6得a39a41。有条件可知9a>0,故q1。311。故数列{an}的通项式为an=n。33由2a13a21得2a13a2q1,所以a1(Ⅱ)bnlog1a1log1a1...log1a1

(12...n)n(n1)2故12112()bnn(n1)nn1111111112n ...2((1)()...())b1b2bn223nn1n1所以数列{ 3.解:

(Ⅰ)由已知,当n≥1时,2n1}的前n项和为

n1bnan1[(an1an)(anan1)(a2a1)]a1

3(22n122n32)2

22(n1)1。

而 a12,所以数列{an}的通项公式为an2(Ⅱ)由bnnann22n12n1。

Sn12223325n22n1 ①

从而 22Sn123225327n22n1 ②

①-②得

(122)Sn2232522n1n22n1。

即 Sn1[(3n1)22n12] 94.解:(1)设{an}的公差为d,由已知得

解得a1=3,d=﹣1 故an=3+(n﹣1)(﹣1)=4﹣n;

﹣(2)由(1)的解答得,bn=n•qn1,于是

﹣Sn=1•q0+2•q1+3•q2+…+(n﹣1)•qn1+n•qn. 若q≠1,将上式两边同乘以q,得

qSn=1•q1+2•q2+3•q3+…+(n﹣1)•qn+n•qn+1. 将上面两式相减得到

﹣(q﹣1)Sn=nqn﹣(1+q+q2+…+qn1)=nqn﹣

于是Sn=

若q=1,则Sn=1+2+3+…+n=

所以,Sn=

5.解:(1)证b1=a2﹣a1=1,当n≥2时,所以{bn}是以1为首项,(2)解由(1)知

为公比的等比数列.,当n≥2时,an=a1+(a2﹣a1)+(a3﹣a2)++(an﹣an﹣1)=1+1+(﹣)+…+===,当n=1时,.

等差数列、等比数列综合习题 篇14

本资料为woRD文档,请点击下载地址下载全文下载地址

2.9.2图形和数列的变化规律

使用人

主备人

修改人

教学内容:

人教版义务教育课程标准试验教科书二年级下册第九单元第116页例2和练习二十三的3、4题。

教学目标:

.让学生发现、探究图形和数字的排列规律,通过比较,从而理解并掌握找规律的方法,培养学生的观察和操作能力。

2.培养学生的推理能力,并能合理、清楚地阐述自己的观点。

3.培养学生发现和欣赏数学美的意识。

重点、难点:、教学重点:引导学生理解图形和数字的对应关系。

2、教学难点:引导学生理解图形和数字的对应关系,并结合图形的变化规律,发现相应的数字变化规律,很好地实现从图形变化规律的认识过渡到数字变化规律的认识上来。

教学准备:

主题挂图、正方形卡片若干、小黑板

教学过程

一、复习旧知,揭示课题

(出示小黑板)

师:小朋友们仔细观察上图,你能发现什么规律呢?生自由交流、汇报。

生活中许多事物都是有规律的。今天我们继续学习“找规律”。(板书课题)

二、探索交流,解决问题

(一)教学例2(出示主题挂图)

1、独立思考:你能看出这些图形的排列规律吗?

2、组内交流:这些图形的排列规律是什么?拿出学具摆一摆,并在小组内互相说一说。

3、谁来告诉大家这些图形的规律是什么?全班反馈。

生1:第二个图形比第一个多了1个,第三个比第二个多了2个,第四个比第三个多了3个,第五个比第四个多了4个。

4、横线上应填几?再往后你会摆吗?应摆几个?为什么?

(引导学生说出:根据正方形个数的特点填写:1+1=2,2+2=4,4+3=7,7+4=11,最后一个肯定是11+5=16,所以应摆16个。)

5、生2:太多了,摆起来太麻烦了,我想换种方式表示。(用数字形式表示)

,2,4,7,11,16,(),()

接下去你会怎么填?

6、请学生独立完成,全班交流,并说说你的想法

(板书数列的变化规律:)

(二)模仿创造:

你能仿照例2的规律自己创造出一些拥有这些规律的图形吗?、独立思考创造。

2、展示你创造出来的规律(同桌交流),3、个别汇报。

三、巩固应用,内化提高

.116页做一做:

(1)四人小组讨论,你能找到其中隐藏着的秘密规律吗?

(2)把你找到的规律告诉大家,括号里应该填几?为什么?

2.括号里的数字是什么?

(1)2、3、5、8、12、17、()

(2)96、()、76、66、56、46

(3)1、2、3、5、8、13、21、()、55

3.完成课本117页第3题。

思考什么规律再填空

4.完成课本118页第4题。

思考什么规律再填空

四、回顾整理,反思提升

这节课学到了什么?你有什么收获?你觉得自己哪些方面还需要努力?

师:今天我们不但找出了图形的变化规律,还找出了数字的变化规律。只要找出每组图形的个数是怎么变化的,就有了相应的数字变化规律。真神奇!原来几个普普通通的数字娃娃排列起来还有这么大的奥妙!

板书设计:

图形和数列的变化规律

作业设计

基础:www.找规律填空(有困难的先摆图再填空):

2.2

32()

3.100

()

4.1

()

5.20

18

16

14

()

10

综合:

.96、()、24、12、6、3

2.3、6、12、24、()、()

3.1、4、9、()、()

4.2、4、8、14、22、()、44、58、、()()

5.1

()

()

拓展提升:

※、1、2、3、5、8、()、()、21

以上是著名的裴波那契数列,从第都是前两个数的和。

教学反思:

等差数列、等比数列综合习题 篇15

数列是高中数学的重点内容,也是高考的必考内容.回顾新课标区近三年的高考数学自主命题的历史,我们从中可发现高考数列所涉及的主要知识、方法和题型,从而可预测高考数列的命题方向,做到有的放矢,重点突破,提高备考效益.该首轮次的复习重点是数列概念、性质及等差(比)数列的基本运算及基本技能训练提高,以便形成知识体系.

1 考点分析

1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数.

2)理解等差(比)数列的概念,探索并掌握等差(比)数列的通项公式与前n项和的公式;能在具体的问题情境中,发现数列的等差(比)关系,并能用有关知识解决相应的问题.

3)了解等差数列与一次函数的关系,等比数列与指数函数的关系.

2 命题走向

1)数列在历年高考都占有很重要的地位,一般情况下都是一客观性题目和一个解答题.

2)基本运算的题目主要考察数列、等差(比)数列的概念、性质、通项公式、前n项和公式、等差中项及等比中项等基本知识和基本性质的灵活应用,对基本的计算技能要求比较高.常考的题型有:求等差中项、等比中项、通项公式、前n项的和、项数、求公差(比)、某一项或知若干项的和求某一项的取值范围;求参数值(或范围);论证某个数列是等差(比)数列.考察的思想方法有:函数与方程、分类讨论、化归转化、换元法及构造法等.

3 首轮复习建议

1)正确理解等差(比)数列的定义,掌握其通项公式与前n项和公式及其内在规律.

2)要总结归纳解决问题的具体常用方法,如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合等.

3)要善于用函数与方程的思想方法、等价转化的思想方法、分类讨论的思想方法及换元法等解决问题.

4)自觉地运用等差(比)数列的性质来化简计算,提高算理能力.

5)初步熟悉用累加法、累乘法、构造等差或等比法求非等差(比)数列的通项与初步熟悉用错位相减法、倒序相加法、裂项相消法、拆项分组法、并项求和法、奇偶数项分别求和法求非等差(比)数列的和.

4 例题选讲

4.1 利用数列的有关公式或等差(比)数列的性质求5个量Sn,a1,an,d,n中的某些基本量

例1 (2002年江苏卷)设{an}为等差数列,{bn}为等比数列,且a1=b1=1,a2+a4=b3,a3=b2b4,分别求{an}及{bn}的前10项的和S10及T10.

法1设公差为d,公比为q,依题意有

解得.

因此

当时,

当时,

法2利用性质,由a2+a4=2a3得

由a3=b2b4得

由(1)(2)得,

又因为b1=1,所以.

以下同法1.

点评本题主要考查等差、等比数列概念及基本运算,考查的思想方法是分类讨论,考查的基本技能是运算能力及逻辑推理能力.要求出等差(比)数列的前10项和,关键求出首项与公差d或公比q.

4.2 论证某个数列是等差(比)数列

例2 (2008年广东惠州二模)设数列{an}中,Sn=4an-1+1(n≥2),且a1=1.

(Ⅰ)若bn—an+1—2an,求证:数列{bn}是等比数列;

(Ⅱ)若,求证:数列{Cn},是等差数列;

(Ⅲ)求数列{an}的通项公式.

解(Ⅰ)当n≥3时,因为

因此,数列{bn}是一个以b1=2,公比为2的等比数列.

(Ⅱ)因为

又因为,所以数列{cn}是一个以首项为,公差为的等差数列.

(Ⅲ)因为

点评本题考查字母的推算变换能力,依据an=Sn-Sn-1 (n≥3)得到关于an-2,an-1,an的递推公式,利用等差(比)数列的定义,将问题解决.

4.3 求非等差、非等比数列的前n项和与通项公式

对于非等差、非等比数列的求和,常用方法有:错位相减法、倒序相加法、裂项相消法、拆项分组法、并项求和法、奇偶数项分别求和法等;对于非等差、非等比数列求通项公式的常用方法有:累加法、累乘法、构造等差或等比法.

例3 (2007年广东佛山)已知数列{an}满足:a1,a2—a1,a3—a2,…,an一an-1…是首项为1,公比为的等比数列.

(Ⅰ)求an的表达式;

(Ⅱ)若设bn=(2n—1)an,求{bn}的前n项和Sn.

解(Ⅰ)因为a1=1时,

所以

累加得

(Ⅱ)因为

所以

由(1)—(2)得

所以

点评本题考查了利用等比数列的概念先求得an与an-1的递推关系,再依累加法求得通项公式an;求和是高考重点,注意抓住通项这个关键,并能依据通项的特点选择合适简便的方法.本题求和过程采用了分组求和法与错位相减法,把它化为一个是等差的数列,另一个局部是等比的数列,从而达到求和目的.该题算理能力要求较高,综合解决问题的能力要求较强.因而规范求解格式的表达及注重细节突破难点是解此类题成功的不二法宝.

高三复习,内容应循序渐进,能力应螺旋上升.在数列的首轮复习中要强调知识的全面,重点的突显.选题应以容易题与中档题为主,去夯实基本知识、基本技能,为二轮复习与最后冲刺打下坚实的能力保障.

等差数列、等比数列综合习题 篇16

通过研究各类试题,笔者发现,伪等比数列法亦是数列不等式证明的一种有效方法.本文结合各类试题,谈谈“伪等比数列法”及其应用.1“伪等比数列法”相关结论

对于正项数列{an},若an+1an>q(或an+1an≥q或an+1an

结论对于正项数列{an},有

(1)若an+1an>q(n∈N*),则an>a1·qn-1(n≥2,n∈N*)成立;(2)若an+1an≥q(n∈N*),则an≥a1·qn-1(n∈N*)成立;

(3)若an+1an证明(1)由an+1an>q,得an=anan-1·an-1an-2·…·a3a2·a2a1·a1>a1·qn-1(n≥2).

(2)(3)(4)类似可证.2应用于高考试题

例1(2014年新课标全国Ⅱ理17)已知数列{an}满足a1=1,an+1=3an+1.

(1)证明{an+12}是等比数列,并求{an}的通项公式;

(2)证明:1a1+1a2+…+1an<32.

证明(1)an=3n-12(过程略).

(2)当n=1时,所证不等式显然成立(下文同,不再重复);

当n≥2时,由an+1=3an+1,a1=1,得an+1>3an>0,所以1an+1<13·1an,则1an<(13)n-1(n≥2),

所以1a1+1a2+…+1an<1+13+…+13n-1=1-(13)n1-13=32[1-(13)n]<32.

例2(2012年全国高考广东理19)设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1、a2+5、a3成等差数列.

(1)求a1的值;(2)求数列{an}的通项公式;

(3)证明:对一切正整数n,有1a1+1a2+…+1an<32.

解(1)a1=1(过程略).

(2)由2Sn=an+1-2n+1+1,可得2Sn-1=an-2n+1(n≥2),

两式相减,可得2an=an+1-an-2n,即an+1=3an+2n,即an+1+2n+1=3(an+2n),

所以数列{an+2n}(n≥2)是以a2+4为首项,3为公比的等比数列.

由2a1=a2-3,可得a2=5,所以an+2n=9×3n-2,即an=3n-2n(n≥2),

当n=1时,a1=1,也满足上式,所以数列{an}的通项公式是an=3n-2n.

(3)由(2)知an+1=3an+2n,an>0,所以1an+1=13an+2n<13·1an,则1an<(13)n-1(n≥2),

所以1a1+1a2+…+1an<1+13+…+13n-1<32(1-13n)<32.

例3(2008年全国高考安徽理21)设数列{an}满足:a1=0,an+1=ca3n+1-c,n∈N*,其中c为实数.

(1)证明:an∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1];

(2)设0

(3)略.

证明(1)(略).

(2)设0

当n≥2时,因为an=ca3n-1+1-c,所以1-an=c(1-an-1)(1+an-1+a2n-1),

因为0

所以1-an≤3c(1-an-1),1-an≤(1-a1)·(3c)n-1=(3c)n-1,所以an≥1-(3c)n-1(n∈N*).

例4(2006年全国高考浙江理20)已知函数f(x)=x3+x2,数列{xn}(xn>0)的第一项x1=1,以后各项按如下方式取定:曲线y=f(x)在(xn+1,f(xn+1))处的切线与经过(0,0)和(xn,f(xn))两点的直线平行(如图).求证:当n∈N*时:

(1)x2n+xn=3x2n+1+2xn+1;

(2)12n-1≤xn≤12n-2.

证明(1)略.

(2)因为函数h(x)=x2+x当x>0时单调递增,

而x2n+xn=3x2n+1+2xn+1≤4x2n+1+2xn+1=(2xn+1)2+2xn+1,所以xn≤2xn+1,即xn+1xn≥12,

因此xn≥(12)n-1,又因为x2n+xn=3x2n+1+2xn+1≥2(x2n+1+xn+1),则x2n+1+xn+1x2n+xn<12,

所以x2n+xn≤(x21+x1)(12)n-1=(12)n-2,所以xn≤x2n+xn≤(12)n-2.

故(12)n-1≤xn≤(12)n-2.3应用于自主招生试题

例5(2013年“卓越联盟”自主招生试题)

已知数列{an}中,a1=3,an+1=a2n-nan+α,n∈N*,α∈R.

(1)若an≥2n对n∈N*都成立,求α的取值范围;

(2)当α=-2时,证明1a1-2+1a2-2+…+1an-2<2(n∈N*).

解(1)α的取值范围是[-2,+∞)(过程略).

(2)由(1)知,当α=-2时,an≥2n(n∈N*).

所以n≥2时,an+1-2=a2n-nan-4=an(an-n)-4≥nan-4≥2(an-2)>0,

所以1an+1-2≤12·1an-2,从而n≥2时,1an-2≤1a1-2·12n-1=12n-1.

所以1a1-2+1a2-2+…+1an-2≤1+12+122+…+12n-1=2-12n-1<2.4应用于竞赛试题

例6(2013年首届“学数学”奥林匹克试题)设数列{an}的前n项和为Sn,且Sn=2n-an(n∈N*).

(1)求数列{an}的通项公式;

(2)若数列{bn}满足bn=2n-1an,求证:1b1+1b2+…+1bn<53.

解(1)an=2-12n-1(过程略).

(2)由(1)知,bn=2n-1an=2n-1.

所以bn+1=2n+1-1=2(2n-12)>2(2n-1)=2bn,

所以当n≥3时,bn>b2·2n-2=3×2n-2,所以1bn<13·(12)n-2(n≥3).

所以1b1+1b2+…+1bn<1+13+13(12+122+…+12n-2)=43+13(1-12n-2)=53-13·12n-2<53.

例7(2012年全国高中数学联赛辽宁省预赛)

设递增数列{an}满足a1=1,4an+1=5an+9a2n+16,n∈N*.

(1)求数列{an}的通项公式;

(2)证明:1a1+1a2+…+1an<2.

解(1)an=23(2n-12n)(过程略).

(2)易知,n≥2时,an+1=23(2n+1-12n+1)=43(2n-12n+2)>43(2n-12n)=2an.

所以an>a1·2n-1,1an<1a1·(12)n-1=(12)n-1(n≥2).

所以1a1+1a2+…+1an<1+12+122+…+12n-1=2(1-12n)<2.5应用于模考试题

例8(2014年安徽省“合肥三模”试题)

已知数列{an},a1=1,an+1=an+1+p1-pa2n(n∈N*,p∈R,p≠1).

(1)求数列{an}为单调递增数列的充要条件;

(2)当p=13时,令bn=11+2an,数列{bn}的前n项和为Sn,求证:12-15n

解(1)数列{an}为单调递增数列的充要条件为-1

(2)当p=13时,an+1=an+2a2n(n∈N*),所以an+1an=1+2an,

所以bn=11+2an=anan+1=2a2n2anan+1=an+1-an2anan+1=12(1an-1an+1),

所以Sn=12[(1a1-1a2)+(1a2-1a3)+…+(1an-1an+1)]=12-12an+1.

由(1)知{an}为单调递增数列,a1=1,所以an+1>0,所以Sn<12.

又an+1-an=(an+2a2n)-(an-1+2a2n-1)=(an-an-1)(1+2an+2an-1)>5(an-an-1),

所以an+1-an>(a2-a1)·5n-1=2×5n-1(n≥2),而a2-a1=2×50,

所以an+1>(an+1-an)+(an-an-1)+…+(a2-a1)+a1>2(5n-1+5n-2+…+50)+1

=2×1-5n1-5+1=5n+12>12×5n.

所以-1an+1>-25n,所以Sn=12-12an+1>12+12(-25n)=12-15n.

综上所述,12-15n

上一篇:社联简报第一期下一篇:日记相伴着快乐成长