界面与胶体化学论文

2024-09-13

界面与胶体化学论文(精选5篇)

界面与胶体化学论文 篇1

胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种均匀混合物,在胶体中含有两种不同状态的物质,一种是分散介质(连续相),另一种是分散粒子(不连续相)。胶体与界面化学是研究界面现象及除小分子分散体系以外的多相分散体系物理和化学性质的科学。内容涉及:各种界面现象、表面层结构与性质以及各种分散体系的形成与性质。

胶体按照分散剂状态不同分为:气溶胶、液溶胶和固溶胶;按分散质的不同可分为:粒子胶体、分子胶体。常见的胶体有Fe(OH)3胶体、Al(OH)3胶体、硅酸胶体、淀粉胶体、蛋白质胶体、豆浆、雾、墨水、涂料、AgI、Ag2S、As2S3、有色玻璃、果冻、鸡蛋清、血液等。胶体能发生丁达尔现象,产生聚沉、盐析、电泳、布朗运动等现象,具有渗析作用等性质。广泛用于农业生产、医疗卫生以及工业生产等领域。本文就胶体的制备和纯化方法做一下学习总结。

一、胶体的制备

胶体物系制备[1]有两种方法:分散法和凝聚法。分散法是使粒子较大的物质分散成胶体物系,通常利用机械能和电能等以达到分散的目的。最常用的是胶体磨,气流粉碎,也可用超声波,电弧等。凝聚法是使溶质分子、原子或离子自行结合成胶粒大小而制成凝胶的方法,通常分物理凝聚法和化学凝聚法两类。胶体物系制备方法如图。

机械分散主要使用胶体磨和气流粉碎机。物料进胶体磨之前,先入球磨机粉碎至0.2mm左右,再进胶体磨粉碎到1µm(1000nm)以下,最小可达10nm。为了防止极微小颗粒聚结,一般还加少量表面活性物质如丹宁或明胶等作稳定剂。工业上常利用此法制备胶体石墨、油漆和矿物颜料等。气流粉碎机是一种高效超细粉碎设备,它被广泛用于染料、技术陶瓷及制药等行业,它也可将物料粉碎至1µm以下。

超声分散是用频率大于20000Hz,人耳不能听到的弹性波将物料撕碎。实验室常用此法将某些松软的物质分散,或将一种液体分散在另一种液体中以形成乳状液。

电弧分散主要用于制备金属的水溶胶。该方法是将被分散的金属作电极,插入水中,通电使之产生电弧。在高温下金属被气化,遇水冷凝成胶粒。加少量碱作稳定剂。

物理凝聚是将被分散物质的蒸气骤冷或改换溶剂或骤冷饱和溶液等使被分散物质凝聚成胶体粒子。如将汞蒸气通入冷水中就可得到汞溶胶;将含松香的酒精溶液滴入水中,由于松香在水中的溶解度低,溶质成胶粒的大小析出,形成松香的水溶胶;用冰骤冷苯的饱和水溶液得到苯的水溶胶。

化学凝聚是利用化学反应在适宜的反应条件(反应物的浓度、溶剂、温度、pH值和搅拌等)下,生成的不溶物由分子分散状态逐步凝聚达到胶体状态的方法。为此必须使反应物的浓度很低,并缓慢混合,而不至于生成沉淀。比如,姚明明等[2]使用化学凝聚法成功合成了稳定的TiO2溶胶;邢林庄等[3]采用柠檬酸钠还原法制备了纳米金胶体;周波等[4]采用单质硅粉水解法,经过初级粒子制备和粒子多级生长,制备了单分散的大粒径硅溶胶。按照化学反应的类别,可分为复分解反应、分解反应、还原反应、氧化反应和水解等几种。如用AgNO3稀溶液与KCl稀溶液进行复分解反应:

AgNO3+KCl=AgCl↓+KNO3 其中任何一种适当地过量,就可制得稳定的AgCl溶胶。将FeCl3缓慢滴入沸水中,即得红棕色的Fe(OH)3胶体:

FeCl3+H2O=Fe(OH)3+3HCl 胶体的纯化

最初制备的溶胶常含有过多的电解质或其他杂质,它们不利于溶胶的稳定,因此需将其除去,即所谓胶体物系的净化[1]。最普通的方法是渗析法。渗析法是将待净化的溶胶用半透膜(羊皮纸,动物膀胱膜,硝酸纤维和醋酸纤维等)与溶剂隔开,溶胶中的电解质或其他杂质(分子、离子)就可穿透半透膜进入溶剂。若不断更换溶剂,即可将多余的电解质或其他杂质移去,达到净化的目的。

为了提高渗透速度,可在半透膜两侧加一电场,以加速离子迁移,这就是电渗析法。另外,增加半透膜两边浓度差,扩大半透膜面积或适当地提高温度均可使渗析加速。

应当指出,适当数量的电解质对溶胶是起稳定作用的,因此,渗析法净化溶胶要注意控制时间,以保证稳定溶胶所需的电解质。温度过高将加剧布朗运动,也会破坏溶胶的稳定性。胶体的纯化还有其他方法,比如闫峰等[5]采用差速离心法成功实现了胶体金探针的纯化;Marcell Pálmai等[6]分别采用离心、过滤、渗析的方法实现了硅溶胶的纯化。参考文献

界面与胶体化学论文 篇2

1 资料与方法

1.1 一般资料

随机选取2014年3月—2015年10月该院收治的住院患者70例, 随机分为两组, 每组35例。观察组中男18例, 女17例, 年龄38~86岁, 平均年龄 (54.63±5.75) 岁, 应用降钙素原电化学发光法进行定量检测。对照组中男17例, 女18例, 年龄33~84岁, 平均年龄 (53.52±5.24) 岁, 采用降钙素原胶体免疫层析方式进行定性检测。参加该研究的患者均为随机抽取, 治疗前患者和家属对于分组方式以及治疗情况均知情并且同意签署了知情同意书, 并通过伦理委员会的批准。两组患者在性别以及年龄等一般资料上比较差异无统计学意义 (P>0.05) , 具有可对比价值。

1.2 方法

对照组患者应用降钙素原电化学发光法进行定量检测, 具体如下:①患者在空腹情况下, 抽取3 m L静脉血液。②将采集的血液样本放置于EDTA抗凝管中, 并且放入自动平衡离心机 (出产公司:北京时代北利离心机有限公司, 型号:DT5-1, 批准文号:京药监械 (准) 字2010第1410813号) 以3 000 r/min的速度进行离心运动, 持续10 min, 待血清完全分离以后再放入-20°C环境中保存。③选取罗氏制药有限公司生产的Roche Elecsys2010电化学发光免疫分析仪 (出产公司:瑞士罗氏制药有限公司, 型号:Roche Elecsys2010, 产地:瑞士, 城市:巴塞尔) , 检验试剂选用罗氏制药有限公司Roche Diagnistics Gmb H (出产公司:瑞士罗氏制药有限公司, 型号:Gmb H, 批号:175455-01) , 严格按照操作规程进行检验。

观察组患者采用降钙素原胶体免疫层析方式进行定性检测, 具体如下:①患者在空腹情况下, 抽取3 ml静脉血液。②将采集的血液样本放置于EDTA抗凝管中, 并且放入北京时代北利离心机有限公司生产的DT5-1自动平衡离心机以3 000 r/min的速度进行离心运动, 持续10 min, 待血清完全分离以后再放入-20°C环境中保存。③选用北京乐普医疗科技有限公司试剂盒, 按照操作规程进行检验。

1.3 疗效评价

统计两组患者通过不同方式检验降钙素原的临床结果数据, 对比两组患者阳性检出率。其中阳性检测标准:降钙素原浓度>0.5 ng/L。

1.4 统计方法

应用SPSS 17.0软件进行相关研究统计数据的处理, 计数资料用百分数 (%) 表示, 并且配合χ2进行校验, P<0.05表示差异有统计学意义。

2 结果

观察组患者中, 检验结果为阳性 (降钙素原浓度>0.5 ng/L) 的有35例 (100%) , 对照组患者中, 检验结果为阳性的有29例 (82.86%) , 观察组患者的阳性检出率明显高于对照组患者, 差异具有统计学意义 (χ2=4.557, P<0.05) 。见表1。

3 讨论

降钙素原是人体内部一种含量较少的糖蛋白, 由机体内甲状腺C细胞分娩产生, 在一般的情况下没有激素活性[2]。但是, 一旦患者出现细菌的感染或者病变, 患者体内的降钙素原浓度与阳性检出率均会急剧升高[3]。所以, 临床中降钙素原可以作为一个炎症诊断的检测指标, 在细菌感染的检测上具有灵敏度高、特异性强等特点[4]。尤其针对于败血症以及脓毒症的早期诊断意义更为重大, 主要是因为传统常规的检测手段和方式操作复杂, 易受到外界其他因素的影响, 诊断的精确度以及敏感度达不到现代医学的要求[5]。而降钙素原由于自身无激素活性, 可以比较好的弥补传统检测方式的不足, 临床的诊断效果和准确性得到了极大的提高, 已经非常广泛的应用于患者感染性疾病的早期诊断中, 成为实际临床诊断中的十分必要的科学依据。

降钙素原电化学发光法与胶体免疫层析法是临床中应用于检测降钙素原最主要的两组检验方式[6]。其中降钙素原电化学发光法属于定量检验, 而降钙素原胶体免疫层析法则是属于定性检测。两种检测方式各有特点, 在实际临床应用中应该深度了解两种检测技术。根据实际临床需要, 合理的选取一种或者将两种检测技术配合进行检测, 以达到临床检测与诊断的最佳效果。降钙素原电化学发光法主要是指采用双抗体夹心法进行检验[7]。具体是将血液采集样本、生物素化的单克隆的血清降钙素原抗体与钌复合物标记过的单克隆血清降钙素原抗体一起培育, 从而形成双抗体的复合物。在经过两次的培育后, 双抗体复合物同磁珠经过生物素的作用相结合, 并在电磁的作用下, 使双抗体复合物出现化学发光, 再通过定标曲线获得检测结果。胶体免疫层析法主要是将血清采用标本中的降钙素原与聚酯膜上金标记的单克隆抗体相结合, 并向上层析。然后被固定在测试区的单克隆抗体所捕获, 并且根据复合物的具体颜色来判别检测阴阳性结果[8]。降钙素原电化学发光法检测敏感度较高, 具有更高的阳性检测率, 检测结果更加准确、可靠, 但操作流程复杂, 要求较高。降钙素原胶体免疫层析检测法操作简单, 检测过程方便、快速, 但是检测的精确性略低于电化学发光检测法, 临床需要根据两组的不同特点合理加以应用。

该研究结果显示, 观察组患者中, 检验结果为阳性 (降钙素原浓度>0.5 ng/L) 的有35例 (100%) , 明显高于对照组患者的29例 (82.86%) , 差异具有统计学意义 (P<0.05) 。而在王树[1]的研究结果中, 电化学发光的阳性率为100.00%, 胶体免疫层析法的阳性率为71.70%, 与该研究类似。说明相较于胶体免疫层析法, 降钙素原电化学发光法的临床检验灵敏度更好, 阳性检测率达到100%, 检测效果更佳。

综上所述, 降钙素原电化学发光法与胶体免疫层析法各有优点, 其中电化学发光检测法灵敏度好, 具有更高的阳性检出率, 胶体免疫层析法操作简单, 方便快速, 临床应根据两者的特点合理加以应用。

摘要:目的 研究对比降钙素原电化学发光法与胶体免疫层析法的临床检验结果 , 为临床检测提供科学依据。方法随机选取该院2014年3月—2015年10月收治的70例住院患者, 随机分成两组。35例为对照组, 应用降钙素原电化学发光法定量检验;35例为观察组, 采用降钙素原胶体免疫层析法进行定性检验。统计比较两组患者的临床检验结果。结果 观察组患者中, 检验结果为阳性 (降钙素原浓度>0.5 ng/L) 的有35例 (100%) , 明显高于对照组患者的29例 (82.86%) , 差异具有统计学意义 (P<0.05) 。结论 降钙素原电化学发光检测法灵敏度好, 阳性检出率更高;降钙素原胶体免疫层析检测法检验时间短、简单快速。临床检测中, 应根据两种检测方式的不同特点合理加以选择和应用, 有助于细菌感染性疾病的早期准确诊断。

关键词:降钙素原,电化学发光法,胶体免疫层析法,临床检验结果

参考文献

[1]王树.电化学发光法和胶体金免疫层析法测定血清降钙素原优劣性分析[J].淮海医药, 2015, 33 (2) :131-132.

[2]杨琴, 张学东, 张文星.两种商品化降钙素原定量检测试剂盒方法学比对[J].中国免疫学杂志, 2014, 30 (11) :1527-1528.

[3]陈世豪, 李健茹, 刘光明, 等.血清降钙素原两种检测系统相关性的分析及对菌血症预示作用研究[J].深圳中西医结合杂志, 2015, 25 (13) :32-33.

[4]田卫花, 马文媛, 李莎莎.ELISA与胶体金免疫层析法检测血清抗CCP抗体在RA诊断中的比较[J].国际检验医学杂志, 2015, 36 (11) :1528-1529.

[5]李宏杰, 应雄江, 王倩倩, 等.ELISA测定HBs Ag血清样本经化学发光法定量检测[J].中国卫生检验杂志, 2015, 25 (6) :856-859.

[6]杨娜.酶联免疫法与电化学发光法检测AFP肿瘤标志物结果的对比分析[J].中国医学工程, 2015, 23 (4) :129, 131.

[7]李炳生, 叶顺星, 杨玉兰.Roche Cobas E411电化学发光分析仪检测降钙素原的分析前质量控制[J].中国医药指南, 2013, 11 (10) :658-659.

纳米沸石胶体化学性质的研究 篇3

主要考察了MFI和BEA结构纳米沸石的胶体化学性质,对与纳米组装过程直接相关的纳米沸石的电动性质(主要体现为ζ电势)和自聚集性质进行了研究.考察了pH值、离子强度和硅铝比对沸石ζ电势的影响.发现纳米沸石表面电性的变化取决于其骨架结构和组成,而电解质浓度的`增大可使沸石胶粒的ζ电势减小;pH增大可使ζ电势向负电性增大的方向变化.较高的ζ电势是维持沸石胶液稳定的基本条件;而过小的ζ电势则将导致纳米沸石的聚集或沉降.在毛细管力作用下纳米沸石可以自组装成沸石纤维,沸石的粒径是影响该组装的关键因素,沸石粒径越小,越容易组装成致密透明的沸石纤维.

作 者:王星东 王亚军 杨武利 董安钢 任楠 谢在库 唐颐 作者单位:王星东,王亚军,董安钢,任楠,唐颐(复旦大学化学系和上海市分子催化和功能材料重点实验室,上海,200433)

杨武利(复旦大学高分子科学系和教育部聚合物分子工程重点实验室,上海,200433)

谢在库(中国石油化工总公司上海石油化工研究院,上海,201208)

界面与胶体化学论文 篇4

一、胶体与溶液、浊液之间最本质的区别是什么?

胶体与溶液、浊液之间最本质的区别是分散质粒子的大小不同。溶液分散质直径< -9-10 m,浊液分散质的直径是>107 m,而胶体的分散质直径介于二者之间。

溶液、胶体和浊液由于分散质粒子大小不同,而在性质上、外观上也有许多不同。比较如下:

二、胶体化学的研究历史

人们在古代就接触和利用过很多种胶体。例如,生活中遇到的面团、乳汁、油漆、土壤等,都属胶体范围。

1663年,卡西厄斯(Cassius)用氯化亚锡还原金盐溶液,制得了紫色的金溶胶。从十九世纪初,人们开始了对胶体的科学研究。1809年,列伊斯使用一支U型管,管底中部放一粘土塞子,盛水后通电。他观察到粘土的悬浮粒子向阳极移动,而阴极一臂中的水位则上升。这个实验证明了粘土粒和水两个相,带有相反的电荷,这种现象叫做“电泳”。1827年,英国植物学家R·布朗(R·Brown,1773~1858)用显微镜观察水中悬浮的藤黄粒子,发现粒子不停顿地在运动着,后来人们就把胶体粒子所呈现的这个重要现象称作“布朗运动”。

1838年,阿歇森(Ascherson,德)在鸡蛋白的水溶液中加入一些橄榄油,使之呈悬浮的微滴。他在研究这种油滴的行为时,看到鸡蛋白在油滴与水(介质)的界面上,形成了一层膜。这一实验表明,在这种情况下蛋白质形成了几分子厚度的一层薄膜,而变得不能溶于水了,这种现象叫做“变性”作用,他同时还发现油滴在蛋白质的“保护”下也不能“聚结”了。1845~1850年间,塞尔米(F·Selmi,意)对无机胶体作了系统的研究,包括AgCl溶胶的生成条件以及盐类对它的凝聚作用。

1857年,法拉第曾做试验,他使一束光线通过一个玫瑰红色的金溶胶。这个溶胶原来也像普通的溶液一样是清澈的,但当光线射过时,从侧面可以看到在此溶胶中呈现出一条光路。后来丁达尔(J·Tyndall,1820~1893,英)对此现象作了广泛的研究,以后人们就把这一现象称做“丁达尔效应”。此外,法拉第还曾做试验,他往无机溶液中先加入动物胶,再加入适当的沉淀剂时发现这时原来的沉淀作用不再发生了,这种作用后来被称做“保护”作用。

1861~1864年间,格雷哈姆(T·Graham,1805~1869,英)对胶体进行了大量的实验。为着区别胶体和晶体,他首先提出了胶体(colloid)这一名称。他指出动物胶是典型的胶体,不结晶,在水中扩散时要比晶体慢得多。他采用过以羊皮纸作半透膜的渗析法,膜的微孔只能让溶液中原为晶体物质的溶质粒子透过,而胶体粒子则穿透不过去。因此他就用这种方法来纯制胶体。他还发现虽然晶体物质的溶质粒子比动物胶类的胶体粒子小得多,但若有许多这类溶质粒子聚集在一起,也能形成一个胶体粒子,金溶胶的形成就属于这种情况。格

雷哈姆还区别了溶胶和凝胶,指出硅酸和氢氧化铝的沉淀就属于后者。他还研究了凝胶的“胶溶”现象和“脱水收缩”现象。他对胶体的这些方面的研究,导致建立了一门有系统性的学科——胶体化学。十九世纪末,人们对半透膜的渗析方法,又通以电流,发展成为电渗析法;另外还通过加压,发展为“超滤法”。1911年,唐南(T·G·Donnan,英)又提出了半透膜平衡的理论,并且为实验所证明。

关于胶体的定义,1907年法伊曼(П·П·Ваймарн,1879~1935,俄)明确地提出了胶体的概念,认为它是物质处在一定程度的分散状态,即粒子大小在十至一千多埃之间。同年,奥斯特瓦尔德进一步对胶体作出新的定义,认为胶体是一种多相体系,由分散相胶粒和分散介质所构成。前者可以是固、液或气体(溶胶、烟、雾、泡沫、膜等)。由于当物质处于高度分散的胶粒状态时,扩展出了很大的界面,因此胶体化学的研究又与表面化学密切联系起来了。

表面力导致吸附现象。J·W·吉布斯在1876年应用热力学,研究了等温吸附,指出,借测量溶液的表面张力,可以计算出液体表面的吸附量。但他的这一理论当时并未引起人们的注意,只是在三十多年后才由实验所证实。1906年,富朗特里希(H·Freundlish)研究了木炭等吸附剂从脂肪酸溶液中吸附溶剂的性质,总结出了经验公式,称做“富氏吸附公式”。1916年,朗缪尔(I·Langmuir,1881~1957,美)又从分子运动论推导出“朗氏吸附公式”,但这一公式只适用于单分子层。次年,他又设计一种“表面天平”,可以计量液面上散布的一层不溶物质的表面积,由此能计算后者的分子截面。1938年,布仑诺厄(S·Brunauer)、爱麦特(P·H·Emmett)和特勒(E·Teller)把朗氏公式推广到多分子层吸附现象,求得一个比较广泛适用的多分子层吸附等温线公式,即后来的所谓“BET公式”,从而建立了现代测定固体比表面的标准方法,它对于催化作用的定量研究起了重大的推进作用。

另一方面,对胶体粒子的直接观察,在二十世纪初也有了进展,1903年,西登托夫(H·Siedentopf,1872~1940)和齐格蒙第(R·Zsigmondy,1865~1929,瑞士)发明了观察胶体粒子运动的超显微镜,实际上观察到的是散射光,即胶粒以一个个亮点的形式而呈现。一般显微镜只能看到2000埃以上的物象,而超显微镜则可以观察到小至100埃的粒子。贝仑(J·B·Perrin,1870~1942,法)就曾借这种仪器进行试验,他把一定大小的藤黄小球悬浮在水中,由于受到地心引力的作用,形成了沉降平衡,由此可以求得阿伏加德罗常数。

1913年,德国鲁斯卡(E·Ruska)、麻尔和阿登内(V·Ardenne)发明了电子显微镜,用电子束代替普通光线,并运用磁镜聚焦,这样能达到三十万倍的线性放大,能观察到10埃以上大小的物像,这也就是胶粒大小的低限。电子显微镜通过复制技术,更可以用来观察表面膜内小至约10埃的胶粒。

为了能够确定一个胶体粒子的“分子量”,1923年,瑞典斯维德贝格(T·Svedberg,1884~)设计了超离心机,获得的引力常数达30万倍于地心引力常数,为测量蛋白质分子在水中的沉降速度创造了条件,从而能计算蛋白质的分子量。他的一些测定结果如下:

牛胰岛素

46,000 人血红朊

63,000 人血清球朊

153,000 章鱼血清朊

2,800,000 烟草花叶病毒

31,400,000 斯维德贝格的工作在亲液胶体方面取得了重大的成就,对蛋白质及高分子溶液的深入了解提供了有力的研究手段。

另一方面,由于憎液胶体具有很大的相界面,从热力学的观点来衡量,它是不稳定的体系。因此有关胶体稳定性的研究便成为胶体化学的中心课题之一。本世纪四十年代,苏联人

杰里雅金(Дерягин)、朗道(Ландау)、荷兰人费韦(Verwey),以及乌弗贝克(Overbeek),各自独立地建立了胶体稳定性的理论,称做DLVO理论。这个理论考虑了质点之间由于双电层的存在而引起的斥力,以及质点之间的范德华力。这样,便第一次从理论上定量地解释了质点形状比较简单的胶体的稳定性,因此对胶体化学的发展有着重大的影响。

综观二十年代利用超离心机的实验,三十年代多层吸附理论和四十年代憎液胶体稳定理论的建立,可以说是最近半世纪中胶体化学领域内的三大成就。

有一类物质,如肥皂、染料,具有很奇特的性质。按其溶液的依数性,可以断定质点的数目很少,但其电导率却很高,并且其电导率与浓度的关系也与一般电解质很不一样。这类物质的另一特点是有增溶作用。麦克班(J·W·McBain,美)在本世纪初期,系统地研究了这类物质的性质,开辟了所谓胶态电解质的领域。他证明,在溶液中,这类物质的分子或离子能聚集成胶团,从而解释了它们的许多特性。近代表面活性剂的多样化应用,正是在这一理论基础上发展起来的。

1936年,缪勒(Erwin Wilhelm Müller,美籍德人)发明了场发射显微镜。他是利用一个高熔金属(钨、铂)的尖端为阴极,在高电场作用下,使该尖端发射出电子,并将其投射在荧光屏上,形成尖端上原子的电子投射象,分辨本领约达20埃。1951年,缪勒进一步将尖端改为阳极,令氦离子投射在屏上,成为场离子显微镜,分辨本领能达到2埃。这些仪器适用于观察表面原子的微观排列,包括被吸附的物质。再结合超高真空技术,它已成为现代研究固体表面结构的有力工具。

当前,胶体化学正在研究的课题大致有:(1)第一吸附层的本性,(2)电化学反应的机理,(3)湿润作用的本性等。此外,还有一些问题有待于创造研究条件,然后才能找到解决的途径。例如:从溶液中吸附的单分子层区;表面层机械性能的本性;泡沫和乳胶的本性等问题。

胶体化学的应用范围,涉及到很多工业部门。近年来对油漆膜的物化性能、催化剂的作用机理、生物膜及合成膜的选择性渗透机理等研究,都受到重视。胶体化学还深入到分子生物学的其他领域。大气污染中气溶胶的形成与破除又是一项重要的课题。自从塑料、橡胶、合成纤维工业兴起以来,胶体化学的研究与高分子化学的联系更加密切。

三、胶体的结构

当溶胶通以直流电时,可以看到胶粒向某一电极移动,这种现象叫做电泳。它说明胶体粒子是带电的。要认识胶体的结构,首先必须了解胶粒为什么会带电。胶粒带电的原因,是由于胶体是高分散的多相体系,具有巨大的界面(总表面积),因而有很强的吸附能力。它能有选择地吸附介质中的某种离子,而形成带电的胶粒。

关于胶体的结构,现在认为,在胶体粒子的中心,是一个由许多分子聚集而成的固体颗粒,叫做胶核。在胶核的表面常常吸附一层组成类似的、带相同电荷的离子。例如,硝酸银

-与氯化钾反应,生成氯化银溶胶,若氯化钾过量,则胶核氯化银吸附过量的Cl而带负电,+若硝酸银过量,则氯化银吸附过量的Ag而带正电。

当胶核表面吸附了离子而带电后,在它周围的液体中,与胶核表面电性相反的离子会扩散到胶核附近,并与胶核表面电荷形成扩散双电层(如图)。扩散双电层由两部分构成:

扩散双电层

(1)吸附层

胶核表面吸附着的离子,由于静电引力,又吸引了一部分带相反电荷的离子(以下简称反离子),形成吸附层。

(2)扩散层

除吸附层中的反离子外,其余的反离子扩散分布在吸附层的外围。距离吸附层的界面越远,反离子浓度越小,到了胶核表面电荷影响不到之处,反离子浓度就等于零。从吸附层界面(图的虚线)到反离子浓度为零的区域叫做扩散层。

这里再以氯化银溶胶为例来说明。包围着氯化银胶核的是扩散双电层(吸附层和扩散层),胶核和吸附层构成了胶粒,胶粒和扩散层形成的整体为胶团,在胶团中吸附离子的电荷数与反离子的电荷数相等,因此胶粒是带电的,而整个胶团是电中性的。

由于胶核对吸附层的吸引能力较强,对扩散层的吸引能力较弱,因此在外加电场(如通直流电)作用下,胶团会从吸附层与扩散层之间分裂,形成带电荷的胶粒而发生电泳现象。

下图是硅酸胶团结构示意图。m个SiO2·nH2O分子聚集成胶核,胶核表面的H2SiO

32有微弱的电离,胶核选择吸附与其组成类似的n个SiO3,H为反离子,总数为2 n个,其

2中2(n-x)个为带负电的SiO3所吸引,共同构成胶粒中的吸附层,其余的2x个H则分

+布在扩散层中,它的胶团结构也可以用下面式子来表示。

硅酸溶胶是土壤胶体中的重要部分,而土壤胶体又是土壤中最重要、最活跃的部分,植物营养的吸收,土壤中的各种反应,大都集中在这一部分。

硅酸胶团结构示意图

胶体在土壤肥力上起着巨大作用,在工农业生产上有着重要意义。

四、高分子凝胶的智能化

高分子凝胶是指三维网络结构的高分子化合物与溶剂组成的体系,由于它是一种三维网络立体结构,因此它不被溶剂溶解,同时分散在溶剂中并能保持一定的形状。溶剂虽然不能将三维网状结构的高分子溶解,但高分子化合物中亲溶剂的基团部分却可以被溶剂作用而使高分子溶胀,这也是形成高分子凝胶的原因之一。

高分子凝胶的智能化表现在以下几方面。当外部环境的pH、离子强度、温度、电场以及环境中所含有的其他化学物质发生变化时,高分子凝胶即呈现出“刺激—应答”状态。例如在高分子凝胶中出现相转变,表现为网络的网孔增大、网络失去弹性、网络的体积急剧变化(可变化几百倍之多),甚至在三维网络结构中不再存在凝胶相。而且这些变化是可逆的和不连续的。

上述这些变化使高分子凝胶的体积既可以发生溶胀,又可以收缩,利用这种性质设计出一种装置,它具有肌肉的功能,这种人造肌肉制成机械手类似于智能机器人的手,能够拿东西。

我们可以看出,这种人造肌肉是被谁指令的呢?那就是上面指出的外部环境的各种物理性质和化学性质发生的变化。

这种具有三维网络结构的高分子凝胶的溶胀行为还可以由于糖类的刺激而发生突变,这样,高分子溶胀行为将受到葡萄糖浓度变化的指令。

葡萄糖浓度信息对于糖尿病患者是很重要的,如果以这种含葡萄糖的高分子凝胶作为负载胰岛素的载体,表面用半透膜包覆,在此体系中随着葡萄糖浓度的变化,高分子凝胶将作出响应,执行释放胰岛素的命令,从而有效地维持糖尿病患者的血糖浓度处于正常。

五、纳米材料

纳米材料是近年来受到人们极大重视的一个领域。它至少可以分为以下三类:

(1)金属与半导体的纳米颗粒。这种物质当颗粒尺寸减小到纳米级时,金属颗粒的能级,从准连续能级变为离散能级,最后达到类似分子轨道的能级。这时,它们的电学、磁学、光学性质都会发生突变。不同物质有不同的尺寸临界值。这类物质是物理学家研究的对象。

(2)Al2O3、MgO、某些硅酸盐等绝缘体,它们的纳米颗粒早已被人们研究(如催化剂、陶瓷材料等),在一般情况下并不呈现特殊的电学性能。

(3)化学家早已合成出的许多大分子、如冠醚化合物、树型化合物、多环化合物、超分子化合物、富勒烯等等,它们的分子尺寸可达几纳米,甚至几十纳米。一些生物活性的大分子也可以归入此类。这些化合物的电子能级一般都表现出分子轨道能级的特点,有时会出现离子导电。它们的导电性质与颗粒尺寸的关系不明显,与金属纳米颗粒的性质有很大的差别。但是,这一类大分子化合物,当分子结构达到一定尺寸和复杂程度时,会出现一些特殊性质,如自修复、自组合等,形成更复杂的结构。以富勒烯为例:

1985年,英国化学家Kroto,美国化学家Curl和Smalley在研究碳原子形成团簇(cluster)的条件和机制时,首次在质谱图上观察到C60和C70的存在。后来因为受到建筑学家Fuller所设计的拱形圆顶建筑的启发,想出了C60的结构应当和足球相似,是由12个五边形和20个六边形组成的中空的球形分子。

值得重视的是,富勒烯的合成也是以碳原子(用电弧放电法使石墨气化)为真正的原料。和人造金刚石的思路有异曲同工之妙,关键在于如何控制碳原子形成团簇时多种可能采取的结构途径之间的比例。

左下图是富勒烯家族中的一些“成员”的结构示意图。右下图是近年来倍受重视的碳纳米管的结构模型图。这种材料因为可以在管上的碳原子处通过形成化学键的方式和其他功能分子相连接,有可能成为一种比较容易制备且可多点连接的分子导线而受到关注。此外,利用它做一种模具,设法在其中充以金属氧化物(可通过硝酸盐的分解来得到),经过还原可制备出纳米量级的金属“细丝”。纳米材料是一个全新的材料科学领域,可作超导材料。

1991年日本Sumio Lijima用电弧放电法制C60得到的碳炱中发现管状的碳管碳的壁为类石墨二维结构,基本上由六元并环构成,按管壁上的碳碳键与管轴的几何关系可分为“扶手椅管”“锯齿状管”和“螺管”三大类,按管口是否封闭可分为“封口管”和“开口管”,按管壁层数可分为单层管(SWNT)和多层管(MWNT)。多层管有点像俄国玩具“套娃”,层

-间距为340 pm,比石墨的层间距335 pm略大。管碳的长度通常只达到纳米级(1 nm=109 m)。

C60自从发现以来,一直是科学家关注的物质。近年的研究发现,C60分子被发现及制备后,其独特的光电磁性引起科学家的浓厚兴趣。例如:C60的超导温度为18 K,当掺杂CHCl3后超导温度提高到80 K,当掺杂CHBr3后超导温度提高到117 K。另外,一般的高分子中引入少量C60后,能产生较好的光电导性能,可用于高效催化剂、紧凑型高能电池、光化学装置及化学传感器。水溶性的高分子C60衍生物将应用于生物与药物中,其抗病毒试验已得到令人惊奇的结果。据最近的研究结果表明,C60具有治疗艾滋病的功效。含C60衍生物能与许多物质发生化学反应。

六、趣味实验 胶体粒子的电泳 操作:

(1)用直径为12厘米培养皿作槽体,槽里加入0.1%的硝酸钾溶液,然后用滴管伸到硝酸钾稀溶液的下面,缓慢地加入硝酸钾饱和溶液,使稀、浓溶液之间形成一个界面。

(2)在槽中央硝酸钾稀溶液里轻轻滴入几滴氢氧化铁溶胶,使它在稀、浓溶液的界面处形成一个圆珠,如图所示。

(3)小心地插入两片碳电极,接通20~30伏的直流电源后,氢氧化铁胶粒逐渐向阴极移动,致使阴极附近溶液的颜色变深。说明氢氧化铁胶体粒子带正电。

七、卤水为什么可以点豆腐

答:豆浆是胶体,卤水是一种镁盐,这种盐使豆浆胶体发生凝聚,所以卤水能点豆腐,豆腐是一种凝胶。

解析:胶体中分散质的直径大小决定了胶体具有独特的性质。①丁达尔现象:此现象是胶体的光学性质,是胶体粒子对光的散射而形成的;②布朗运动:是胶体的力学性质,是胶体粒子受到分散剂分子在每一方向不均衡碰撞造成的;③电泳现象:是胶体的电学性质。这是由于胶体具有较大的表面积,能吸附阳离子或阴离子,使得胶粒带有正电荷或负电荷。在外加电场作用下带电胶粒向阴极或阳极作定向移动。④胶体粒子由于都带有相同电荷,它们之间相互排斥而达到相对稳定状态,当向胶体中加入某电解质时,破坏了胶粒之间的排斥力,使胶粒凝聚而沉积下来。卤水点豆腐就是这个原理,此过程称胶体的凝聚。

八、能否使用两种不同品牌的蓝黑墨水?

答:不能,同时使用两种不同牌子的墨水,会出现钢笔堵塞现象。

界面与胶体化学论文 篇5

1. 危险化学品的分类

凡具有爆炸、易燃、毒害、腐蚀、放射性等危险性质, 在运输、装卸、生产、使用、储存、保管过程中, 在一定条件下能引起燃烧、爆炸, 导致人身伤亡和财产损失等事故的化学物品, 统称为危险化学品[1]。

危险化学品按照《危险货物分类和品名编号》进行分类, 共分九类, 分别是:第一类:爆炸品。第二类:气体。第三类:易燃液体。第四类:易燃固体、易于自燃的物质、遇水放出易燃气体的物质。第五类:氧化性物质和有机过氧化物。第六类:毒性物质和感染性物质。第七类:放射性物质。第八类:腐蚀性物质。第九类:杂项危险物质和物品[1]。

根据危险化学品的易燃、易爆、有毒、腐蚀等危险特性, 危险化学品事故可划分为:危险化学品火灾事故;危险化学品爆炸事故;危险化学品中毒和窒息事故, 危险化学品灼伤事故;危险化学品泄漏事故;其他危险化学品事故[2]。

2. 经典的危险化学品定量分析检测技术

危险化学品检测方法多采用高精度的仪器设备检测, 按照仪器分析的基本原理主要有:光学分析法、电化学分析法、色谱分析法、生物传感技术和其他分析法 (见表1) 。

(1) 光学分析法。

光学分析法是基于光作用于物质后产生的辐射信号或所引起的变化来进行分析的方法, 可分为光谱法和非光谱法两类。

(1) 紫外-可见分光光度法。

紫外-可见分光光度法:是基于物质对紫外-可见光辐射的选择性吸收来进行分析测定的方法。本法具有快速、简便、重现性好等优点, 但由于干扰因素较多, 选择性较差, 多用于汞、铅、镉的测定。

(2) 石墨炉原子吸收法。

利用石墨管高温下使样品原子化, 通过炉内光路产生吸收的原理来测定。该法具有灵敏度高, 选择性好, 方法简便, 分析速度快等优点, 但石墨管耗价昂贵, 且不能同时测定多个元素[3,4,5,6]。Caldas等 (2009) 利用石墨炉原子吸收法检测巴西朗姆酒中砷、铜、铅的含量。Janyeid Karla Castro Sousab等 (2008) 利用石墨炉原子吸收法在石油样品中检测铜的含量。

(3) 火焰原子吸收法。

火焰原子吸收法是由化学火焰提供能量, 使被测元素原子化。该法应用最早, 而且至今仍在广泛使用 (北京大学化学系, 1997) 。Shokrollahi等 (2008) 利用火焰原子吸收法测定在各种环境样品中Cu2+的含量。Bakirdere等 (2008) 利用火焰原子吸收法测定了在路边土壤和植物样品中铅、镉、铜的含量。

(4) ICP-AES法 (电感藕合等离子体原子发射光谱分析法) 。

ICP-AES法是电感藕合等离子炬管为激发光源的一种光谱分析方法。ICP激发光源是一种具有6000~7000K的高温激发光源, 由高频放电产生的。外形与化学火焰相似的电火源, 其激发光源 (炬管) 为分析试样组份元素提供蒸发。原子化或激发的能量, 是原子发射光谱仪中一个极其重要的组成部分。试样溶液经雾化后, 随载气氩带入炬焰的中心通道中而被原子化和激发, 产生多元素分析谱线[7,8,9]。

(5) 荧光分析法。

某些物质受紫外光或可见光照射激发后能发射出比激发光波长较长的荧光。物质的激发光谱和荧光发射光谱, 可以用作该物质的定性分析。当激发光强度、波长、所用溶剂及温度等条件固定时, 物质在一定浓度范围内, 其发射光强度与溶液中该物质的浓度成正比关系, 可以用作定量分析。荧光分析法的灵敏度一般较紫外分光光度法或比色法高。

(6) 原子荧光分析法。

在一定条件下, 气态原子吸收辐射光后, 本身被激发成激发态原子, 处于激发态上的原子不稳定, 跃迁到基态或低激发态时, 以光子的形式释放出多余的能量, 根据所产生的原子荧光的强度即可进行物质组成的测定。物质的基态原子受到光的激发后, 会释放出具有特征波长的荧光, 据此可对物质进行定性分析。物质的定量分析可通过测定原子荧光的强度来实现[10]。

(2) 电化学分析法。

电化学分析是应用电化学原理和实验技术建立的分析方法。通常是将待测组分以适当的形式置于化学电池中, 然后测量电池的某些参数或这些参数的变化进行定性和定量分析。但因检出灵敏度低, 特异性差, 而且操作麻烦费时, 不能满足测定的要求。一般不用来检测重金属。

(3) 色谱分析法。

色谱法是一种极有效的分离技术, 借助两相间分配系数的差异而使混合物中各组分分离, 并对组分进行测定的方法。色谱法的特点是:高效能、高灵敏度、高选择性和分析速度快。

气相色谱法是以气体为流动相, 以涂在惰性载体或柱内壁上的高沸点有机化合物或表面活性吸附剂为固定相的柱色谱分离技术。作为气相色谱分析的化合物的要求具有挥发性和热稳定性, 因此无机物作为气相色谱分析, 首先要转变其化学形式使其具有挥发性及热稳定性。金属离子与一些有机试剂作用生成的螯合物符合此要求, 金属螯合物的特点是可以定量反应, 容易得到纯化合物, 适合于环境污染物的痕量分析[11]。伊拉克发生的误食含有有机汞种子的中毒事件中甲基汞的监测就是采用气相色谱法检测的。

(4) 其他分析法。

质谱法是将待测物质的分子转变成带电粒子, 利用稳定的磁场使带电粒子按照质量大小顺序分离开来, 形成有规则并可以检测的质谱[12]。等离子体质谱法 (Inductively coupled plasma mass spectrometry) 的应用被认为是20世纪80年代痕量元素及同位素分析的一项重要进展。

(5) 生物传感技术。

生物传感器是高科技的电子技术和生物工程技术相结合的产物, 由固定化并具有化学分子识别的生物材料、换能器件及信号放大装置构成, 能够选择性地对样品中的待测物发出响应, 并把待测物质的浓度转化为电信号, 根据电信号大小定量测出待测物质的浓度。生物传感器的选择性的好坏完全取决于它的分子识别原件, 而其他性能则和它的整体组成有关。

Andrew等 (1998) 利用光学纤维反射传感器固定化Br-PADAP估测重金属的含量, 对重金属锌的检测灵敏度可达31ppb, 而检测时间只有6min。Kukla等 (1999) 利用胆碱酯酶、脲酶、葡萄糖氧化酶等多酶系统来制成多酶电化学传感器, 以酶膜残留的活性来判断重金属含量。Ibolya等 (2000) 利用发光酶固定化生物传感器来检测重金属汞、镉、铜、锌, 检测限约为10-15μmol/L。Alexander等 (2000) 利用含有荧光基因细菌发出的荧光检测重金属砷。Lehmann (2000) 和Riether等 (2001) 开发出一种专门测量铜离子的电流型生物传感器。生物传感器的研究和开发在重金属残留分析领域相对滞后, 这种酶电极的主要缺陷是灵敏度不太高, 特异性不强, 回收率低, 重复性较差, 电极使用寿命短难以真正满足重金属残留快速检测的要求, 实际应用也不多。

3. 胶体金免疫层析技术

(1) 方法简介。

图1胶体金免疫层析试纸条结构

胶体金免疫层析技术是一种将胶体金标记技术、免疫检测技术和层析分析技术等多种方法有机结合在一起的固相标记免疫检测技术。它的原理是:以条状纤维层析材料为固相, 通过毛细作用使样品溶液在层析条上泳动, 并同时使样品中的待测物与层析材料上针对待测物的受体 (抗原或抗体) 发生高特异性、高亲和性的免疫反应, 层析过程中免疫复合物被富集或截留在层析材料的一定区域 (检测带) , 运用可目测的标记物 (胶体金) 而得到直观的实验现象 (显色) 。而游离标记物则越过检测带, 与结合标记物自动分离 (见图1) 。这种分析技术具有操作简单快速, 可单份测定, 无须特殊仪器等优点, 适合于各种快速检测场合, 尤其适用于在事故发生过程中对危险化学品进行快速检测[13]。

(2) 胶体金免疫层析技术的发展。

胶体金用于免疫学检测研究是20世纪80年代发展起来的一项新技术, Muller等 (1980) 应用该技术对牛痘病毒进行了免疫电镜研究, Geoghegan等 (1980) 和Leuvering等 (1981) 应用胶体金进行了被动凝集试验, Leuvering等 (1983) 利用胶体金做了人妊娠诊断研究, Manara等 (1982) 用过氧化物酶和金染色进行了细胞膜双标记的免疫电镜研究, Wybran等 (1985) 应用金染色对淋巴细胞亚群做了计数研究。总之, 胶体金在免疫检测中的初步应用已显示了广阔前景[14]。

(3) 胶体金免疫层析技术在检测危险化学品中的应用。

(1) 重金属的检测。

国内外已经建立了针对有机污染物的免疫胶体金检测方法, 并且将该方法用于重金属离子的分析检测, 迄今为止, 免疫胶体金检测技术已经成功用于水中的铟、汞、镉、铅和铀等的检测。

刘斌等研究了纳米Ti O2分离富集水样中痕量镉的最佳反应条件, 应用自制抗Cd (Ⅱ) -i EDTA (Isothiocya-nobenzyi-EDTA) 螯合物的单克隆抗体, 建立了快速检测环境水样中重金属镉残留的胶体金免疫层析法。对实测样品的检测耗时约90min, 该方法对Cd的定量下限可达5μg/L, 适用于环境水样中的检测[15]。

向军俭等研制检测水样品中镉离子残留的胶体金免疫层析快速检测试纸条, 对试纸条进行灵敏度、特异性和稳定性验证, 并检测添标水样。结果制备的试纸条对镉离子的最低检测限为100 ng/ml;除了与Hg2+-EDTA有交叉反应外与Fe3+、Pb2+、Cu2+等类似物无交叉反应;试纸条在常温下放置8周稳定性良好;检测添标水样的结果与ICP-AES的检测结果一致, 可作为水样中重金属镉离子残留现场检测和监控的有效手段[16]。

(2) 农药的检测。

万积成等通过研究胶体金法与气相色谱法在检测毒死蜱中的应用, 证实胶体金试纸条在检测蔬菜中毒死蜱残留的可靠性。与气相色谱法相比较, 胶体金试纸检测毒死蜱操作简便、观察直观、快速、省时, 其特异性、敏感性较高, 可作为毒死蜱农药残留自我检测的手段[17]。

万积成等采用胶体金法半定量方法检测的试样, 再用液相色谱-串联质谱法定量检测试样中吡虫啉。结果发现胶体金试纸检测为阳性与阴性样品经液相色谱-串联质谱检测的符合率达到了100%。添加的cut off值样品的回收率为88.4%。结论:与液相色谱-串联质谱相比较, 胶体金法检测吡虫啉具有操作简便、直观、快速、省时的特点, 其特异性、敏感性较高, 适用性强, 可作为吡虫啉农药残留自我检测的手段应用[18]。

赵友全等利用甲霜灵胶体金试纸条用于现场快速检测进出口蔬菜甲霜灵农药残留量。在对试纸条光谱测量分析的基础上, 研制出一种基于图像测量的便携式甲霜灵试纸条显色分析仪器, 该仪器集成了样品滴定、定时检测、显色度分析、身份认证等多种功能, 实现了试纸条的自动检测、显色度数值分析和数据存储[19]。

肖琛等应用胶体金免疫层析技术研制出一种准确、快速、简便检测氰戊菊酯农药残留的试纸条。实验结果表明, 该快速检测试纸条100%抑制浓度为800ng/m L (检测线无色) , 检测时间为10min, 批次内和批次间重复性为100%。采用该试纸条检测农产品中残留的氰戊菊酯特异性强、灵敏度高而且无需特殊仪器设备, 适用于农产品中氰戊菊酯残留的快速检测[20]。

(3) 表2列出了小分子相关的文章。

4. 结语

上一篇:拆除违章建筑实施方案下一篇:猫捉老鼠作文600字