等差与等比数列综合专题练习题

2024-08-21

等差与等比数列综合专题练习题(共10篇)

等差与等比数列综合专题练习题 篇1

值时,n=()A.11a<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正a10

anB.17C.19D.21 2.已知公差大于0的等差数列{

求数列{an}的通项公式an. }满足a2a4+a4a6+a6a2=1,a2,a4,a8依次成等比数列,3.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.求证:△ABC是等边三角形.

4.设无穷等差数列{an}的前n项和为Sn.是否存在实数k,使4Sn=(k+an)2对一切正整数n成立?若存在,求出k的值,并求相应数列的通项公式;若不存在,说明理由.

答:存在k=0,an=0或k=1,an=2n-1适合题意.

5.设数列{an}的前n项和为Sn,已知a1=1,Sn=nan﹣2n(n﹣1),(n∈N*)(Ⅰ)求证数列{an}为等差数列,并写出通项公式;(Ⅱ)是否存在自然数n,使得S1S22S3

3Sn

n400?

若存在,求出n的值;若不存在,说明理由;

6.已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.(1)求数列{an}的通项公式;

a(2)设bnm、k(k>m≥2,m,k∈N*),使得b1、bm、bk成等比数列?若存在,an+1

求出所有符合条件的m、k的值;若不存在,请说明理由.

2a1+9d=11a1=1,解:(1)设等差数列{an}的公差为d,即,解得所以an=a1+(n-1)d2a1+19d=21d=1.**2=n(n∈N).(2)假设存在m、k(k>m≥2,m,k∈N),使得b1、bm、bk成等比数列,则bm=

an1mkm21kb1bk.因为bn=,所以b1=,bm=,bk=所以(=×.整理,22k+1an+1n+1m+1k+1m+1

2m2

得k=-m+2m+1

以下给出求m、k的方法:因为k>0,所以-m2+2m+1>0,解得1-2

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f(x)=3x2-2x,.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上

3m(1)求数列{an}的通项公式;(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所20anan+1

有n∈N*都成立的最小正整数m.17.已知点(1是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)3

-c,数列{bn}的首项为c,且前n项和Sn满足Sn-Sn-1Sn+Sn+1(n≥2).(1)求数列{an}

11000和{bn}的通项公式;(2)若数列{前n项和为Tn,问Tn>n是多少? 2009bnbn+1

8.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为4,数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0

等差数列专题 篇2

【方法总结1】

(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.

(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.

【方法总结2】

1.一般地,运用等差数列的性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*),需要当序号之和相等、项数相同时才成立.

2.将性质mnpqamanapaq与前n项和公式Sn

题过程.

3.等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).

(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*).

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇ndn为奇数,则S奇-S偶=a中(中间项). 2n(a1an)结合在一起,采用整体思想,简化解

2【方法总结3】

1.公差不为0的等差数列,求其前n项和的最值,一是把Sn转化成n的二次函数求最值;二是由an≥0或an≤0找到使等差数列的前n项和取得最小值或最大值的项数n,代入前n项和公式求最值.求等差数列前n项和的最值,2.常用的方法:

(1)利用等差数列的单调性,求出其正负转折项;

(2)利用性质求出其正负转折项,便可求得和的最值;

(3)利用等差数列的前n项和Sn=An2+Bn(A、B为常数)为二次函数,根据二次函数的性质求最值. 与其他知识点结合则以解答题为主.【规律总结】

一个推导:利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn

n(a1an)

.2

两个技巧:已知三个或四个数组成等差数列的一类问题,要善于设元.

(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

四种方法:等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

热点一 等差数列基本量的计算

1.【2013年普通高等学校招生全国统一考试(安徽卷文科)】设Sn为等差数列an的前n项和,S84a3,a72,则a9=()

(A)6(B)4(C)2(D)2

2,【2013年普通高等学校招生全国统一考试(广东卷)理】 在等差数列an中,已知a3a810,则3a5a7 _____.3.(2012年高考辽宁文)在等差数列{an}中,已知a4+a8=16,则a2+a10=()A.12

B.16

C.20

D.24

4.(2012年高考北京文)已知{an}为等差数列,Sn为其前n项和.若a1,Sa3,则 22

a2________;Sn=________.5.(2012年高考重庆理)在等差数列{an}中,a21,a45,则{an}的前5项和S5=()A.7B.15C.20D.25

6.(2012年高考福建理)等差数列an中,a1a510,a47,则数列an的公差为

A.1

B.2C.3

D.4

()

27.(2012年高考广东理)已知递增的等差数列an满足a11,a3a24,则an______________.8.【2013年普通高等学校统一考试试题大纲全国理科】

2等差数列{an}的前n项和为Sn.已知S3a2,且S1,S2,S4成等比数列,求{an}的通项公式.9.【2013年普通高等学校招生全国统一考试(福建卷)文科】已知等差数列an的公差d=1,前n项和为Sn(I)若1,a1,a3成等比数列,求a1;

10.(2012年高考(山东文))已知等差数列{an}的前5项和为105,且a202a5.(Ⅰ)求数列{an}的通项公式;

(Ⅱ)对任意mN*,将数列{an}中不大于72m的项的个数记为bm.求数列{bm}的前m项和Sm.

(II)若S5a1a9,求a1的取值范围。

热点二 等差数列性质的综合应用

11.【2013年普通高等学校招生全国统一考试(上海卷)文】在等差数列an中,若a1a2a3a430,则

a2a3.

12.(2012年高考辽宁理)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=()

A.58

B.88

C.143

D.176

13.(2012年高考江西理)设数列an,bn都是等差数列,若a1b17,a3b321,则a5b5__________ 14.(2012年高考四川文)设函数f(x)(x3)x1,{an}是公差不为0的等差数列,f(a1)f(a2)f(a7)14,则a1a2a7()

A.0 B.7 C.14 D.21

15.(2012年高考大纲理)已知等差数列an的前n项和为Sn,a55,S515,则数列()A.

1

的前100项和为

anan1

B.

101

C.

100

D.

16.(2012年高考山东理)在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式;

(Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列bm 的前m项和Sm.m

2m

17.【2013年高考新课标Ⅱ数学(文)卷】已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求an的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.热点三 等差数列的定义与应用

18.【2013年普通高等学校招生全国统一考试(辽宁卷)理科】下面是关于公差d0的等差数列an的四个命题:

p2:数列nan是递增数列; p1:数列an是递增数列;

a

p4:数列an3nd是递增数列; p3:数列n是递增数列;

n

其中的真命题为()

(A)p1,p2(B)p3,p4(C)p2,p3(D)p1,p4 19.(2012年高考四川理)设函数f(x)2xcosx,{an}是公差为

f(a1)f(a2)f(a5)5,则[f(a3)]a1a3()

的等差数列, 8

A.0

B.

 16

C.

D.

132

 16

20.(2012年高考浙江理)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()..A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0

C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列

等差数列练习题 篇3

A.2n+1   B.2n-1

C.2n   D.2(n-1)

答案:B

2.已知等差数列{an}的首项a1=1,公差d=2,则a4等于()

A.5 B.6

C.7   D.9

答案:C

3.△ABC三个内角A、B、C成等差数列,则B=__________。

解析:∵A、B、C成等差数列,∴2B=A+C。

又A+B+C=180°,∴3B=180°,∴B=60°。

答案:60°

4.在等差数列{an}中,

(1)已知a5=-1,a8=2,求a1与d;

(2)已知a1+a6=12,a4=7,求a9。

解:(1)由题意,知a1+?5-1?d=-1,a1+?8-1?d=2。

解得a1=-5,d=1。

(2)由题意,知a1+a1+?6-1?d=12,a1+?4-1?d=7。

解得a1=1,d=2。

等差数列基础练习题 篇4

2、一个递增(后项比前项大)的等差数列,第53 项比第28 项________(多或少)______个公差。

3、一个递增(后项比前项大)的等差数列,第55 项比第37 项________(多或少)______个公差。

4、一个递增(后项比前项大)的等差数列,第55 项比第83 项________(多或少)______个公差。

5、一个递增(后项比前项大)的等差数列,第28项比第73项________(多或少)______个公差。

6、一个递增(后项比前项大)的等差数列,第90项比第73项________(多或少)______个公差。

7、一个递增(后项比前项大)的等差数列,首项比第73 项________(多或少)______个公差。

8、一个递增(后项比前项大)的等差数列,第87 项比首项________(多或少)______个公差。

9、一个递减(后项比前项小)的等差数列,第18项比第 32 项________(多或少)______个公差。

10、一个递减(后项比前项小)的等差数列,第32项比第 18 项________(多或少)______个公差。

11、一个递减(后项比前项小)的等差数列,第74项比第26项________(多或少)______个公差。

12、一个递减(后项比前项小)的等差数列,第74项比第91 项________(多或少)______个公差。

13、一个递减(后项比前项小)的等差数列,第29项比第 86 项________(多或少)______个公差。

14、一个递减(后项比前项小)的等差数列,第123 项比第86项________(多或少)______个公差。

15、一个递减(后项比前项小)的等差数列,首项比第76 项________(多或少)______个公差。

16、一个递减(后项比前项小)的等差数列,第76项比首项________(多或少)______个公差。

17、一个递增(后项比前项大)的等差数列,第________项比第75项多19 个公差。

18、一个递增(后项比前项大)的等差数列,第________项比第75项少19 个公差。

19、一个递增(后项比前项大)的等差数列,第________项比首项多19个公差。

20、一个递增(后项比前项大)的等差数列,比第92 项少 19 个公差是第________项。

21、一个递增(后项比前项大)的等差数列,比第92 项多 19 个公差是第________项。

22、一个递增(后项比前项大)的等差数列,比首项多19个公差是第________项。

23、一个递减(后项比前项小)的等差数列,第________项比第58项多17个公差。

24、一个递减(后项比前项小)的等差数列,第________项比第58项少17个公差。

25、一个递减(后项比前项小)的等差数列,第________项比首项少 17 个公差。

26、一个递减(后项比前项小)的等差数列,比第67 项少28 个公差是第________项。

27、一个递减(后项比前项小)的等差数列,比第67 项多28 个公差是第________项。

28、一个递减(后项比前项小)的等差数列,比首项少28个公差是第________项。

29、一个递增(后项比前项大)的等差数列公差是3,第 28 项比第53项________(多或少)______。

30、一个递增(后项比前项大)的等差数列公差是4,第 53项比第28项________(多或少)______。

31、一个递增(后项比前项大)的等差数列公差是5,第55项比第37项________(多或少)______。

32、一个递增(后项比前项大)的等差数列公差是6,第55项比第83项________(多或少)______。

33、一个递增(后项比前项大)的等差数列公差是7,第28 项比第73项________(多或少)______。

34、一个递增(后项比前项大)的等差数列公差是8,第90 项比第73项________(多或少)______。

35、一个递增(后项比前项大)的等差数列公差是8,首项比第73 项________(多或少)______。

36、一个递增(后项比前项大)的等差数列公差是4,首项比第26 项________(多或少)______。

37、一个递减(后项比前项小)的等差数列公差是9,第 18 项比第32 项________(多或少)______。

38、一个递减(后项比前项小)的等差数列公差是4,第32 项比第18 项________(多或少)______。

39、一个递减(后项比前项小)的等差数列公差是3,第 74 项比第26项________(多或少)______。

40、一个递减(后项比前项小)的等差数列公差是7,第 74 项比第91 项________(多或少)______。

41、一个递减(后项比前项小)的等差数列公差是8,第 29 项比第86 项________(多或少)______。

42、一个递减(后项比前项小)的等差数列公差是9,第123 项比第86项________(多或少)______。

43、一个递减(后项比前项小)的等差数列公差是9,第23 项比首项________(多或少)______。

44、一个递减(后项比前项小)的等差数列公差是6,第46 项比首项________(多或少)______。

45、一个递增(后项比前项大)的等差数列公差是3,有一项比第34项大57,这一项比第34项________(多或少)________个公差,这一项是第________项。

46、一个递增(后项比前项大)的等差数列公差是4,有一项比第78项小56,这一项比第78项________(多或少)________个公差,这一项是第________项。

47、一个递增(后项比前项大)的等差数列公差是5,有一项比第46项大60,这一项比第46项________(多或少)________个公差,这一项是第________项。

48、一个递增(后项比前项大)的等差数列公差是6,有一项比第64项小72,这一项比第64项________(多或少)________个公差,这一项是第________项。

49、一个递增(后项比前项大)的等差数列公差是5,有一项比首项大70,这一项比首项________(多或少)________个公差,这一项是第________项。

50、一个递减(后项比前项小)的等差数列公差是7,有一项比第34项大91,这一项比第34项________(多或少)________个公差,这一项是第________项。

51、一个递减(后项比前项小)的等差数列公差是8,有一项比第74项小96,这一项比第74项________(多或少)________个公差,这一项是第________项。

52、一个递减(后项比前项小)的等差数列公差是9,有一项比第87项大72,这一项比第87项________(多或少)________个公差,这一项是第________项。

53、一个递减(后项比前项小)的等差数列公差是6,有一项比第59 项小 84,这一项比第59 项________(多或少)________个公差,这一项是第________项。

54、一个递减(后项比前项小)的等差数列公差是6,有一项比首项小 84,这一项比首项________(多或少)________个公差,这一项是第________项。

55、一个递增的等差数列公差是3,第34 项是 123,第91项是________。

56、一个递增的等差数列公差是6,第21 项是 192,第52项是________。

57、一个递增的等差数列公差是3,第91 项是 336,第23项是________。

58、一个递增的等差数列公差是4,第87项是523,第33项是________。

59、一个递增的等差数列公差是4,首项是9,第91项是________。

60、一个递增的等差数列公差是6,首项是3,第67项是________。

61、一个递增的等差数列公差是4,第65 项是579,首项是________。

62、一个递增的等差数列公差是4,第78 项是491,首项是________。

63、一个递减的等差数列公差是3,第34 项是 923,第91项是________。

64、一个递减的等差数列公差是6,第21 项是 492,第52项是________。

65、一个递减的等差数列公差是3,第91 项是 336,第23项是________。

66、一个递减的等差数列公差是4,第87项是523,第33项是________。

67、一个递减的等差数列公差是4,首项是529,第91项是________。

68、一个递减的等差数列公差是6,首项是431,第67项是________。

69、一个递减的等差数列公差是4,第65 项是 312,首项是________。

70、一个递减的等差数列公差是4,第78 项是 336,首项是________。

71、一个递增的等差数列公差是3,第23 项是89,332是这个数列的第________项。

72、一个递增的等差数列公差是4,第23 项是 97,341是这个数列的第________项。

73、一个递增的等差数列公差是6,第59 项是489,63是这个数列的第________项。

74、一个递增的等差数列公差是7,第78 项是667,282 是这个数列的第________项。

75、一个递增的等差数列公差是3,首项是8,182 是这个数列的第________项。

76、一个递减的等差数列公差是3,第23 项是 89,122是这个数列的第________项。

77、一个递减的等差数列公差是4,第23 项是97,153是这个数列的第________项。

78、一个递减的等差数列公差是6,第29 项是623,95是这个数列的第________项。

79、一个递减的等差数列公差是7,第18 项是565,285 是这个数列的第________项。

80、一个递减的等差数列公差是4,首项是565,281 是这个数列的第________项。

81、一个递增的等差数列,第23项是98,第61项是250,这个等差数列公差是________。

82、一个递增的等差数列,第34项是298,第52 项是 334,这个等差数列公差是________。

83、一个递减的等差数列,第18项是298,第51项是67,这个等差数列公差是________。

84、一个递减的等差数列,第58项是332,第92 项是94,这个等差数列公差是________。

85、一个等差数列的公差是3,第23项是85,末项是361,这个数列的项数是________。

86、一个等差数列的公差是4,第18项是85,末项是 261,这个数列的项数是________。

87、一个等差数列的公差是5,首项是3,末项是253,这个数列的项数是________。

88、一个等差数列的公差是6,首项是4,末项是340,这个数列的项数是________。

89、一个等差数列的公差是3,第18项是100,末项是10,这个数列的项数是________。

90、一个等差数列的公差是4,第18项是102,末项是6,这个数列的项数是________。

91、一个等差数列的公差是5,首项是223,末项是8,这个数列的项数是________。

92、一个等差数列的公差是6,首项是206,末项是14,这个数列的项数是________。

93、已知一个等差数列第13 项等于 71,第61项等于 263.(1)这个等差数列的公差是多少?()

(2)首项是多少?()

(3)第 100 项是多少?()

(4)前100 项的和是多少?()

(5)47是这个数列的第几项()

(6)303 是这个数列的第几项?()

94、已知一个等差数列的第31项为840,第36项为 9(1)这个等差数列的公差是多少?()

(2)首项是多少?()

(3)第 60 项是多少?()

(4)前50 项的和等于多少?()

(5)1020 是第几项()

95、已知一个等差数列的第19项等于217,第82 项等(1)这个等差数列的公差是多少?()

(2)首项是多少?()

(3)第 60 项是多少?()

(4)前30 项的和等于多少?()

96、一个等差数列的第20 项和第35 项分别是200和(1)这个等差数列的公差是多少?()

(2)第 5项是多少?()

(3)第 50 项是多少?()

(4)92是这个数列的第几项?((5)302 是这个数列的第几项?()

(6)前100 项的和等于多少?()

97、有一个等差数列,4、10、16、22、…、370.(1)第26项是多少?()

(2)52是第几项?()

(3)所有项的和等于多少?()

(4)前40 项的和等于多少?()

98、数列3,6,9,…300,303 是一个等差数列。

(1)第43 项是多少?()

(2)90是第几项?()

(3)这个等差数列中所有数的和是多少?()

(4)前40 项的和等于多少?()

99、已知等差数列2、9、16、23、30、…、709.(1)第 26项是多少?()

(2)142 是第几项()

(3)这个等差数列中所有数的和是多少?()

(4)前30 项的和是多少?()

100、等差数列可以写成:4、13、22、31、40…、364.(1)第15 项是多少?()

(2)184 是这个数列的第几项?()

(3)所有项的和是多少?()

等差数列重点题型练习 篇5

一、选择题

1.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于()A.50B.100C.150D.200

2.在数列{a2n}中,a1=1,an+1=an-1(n≥1),则a1+a2+a3+a4+a5等于()A.-1B.1C.0D.2 3.若数列{an}的前n项和Sn=n2-2n+3,则此数列的前3项依次为()A.-1,1,3B.2,1,3C.6,1,3D.2,3,6

4.等差数列{an}中,a4+a7+a10=57,a4+a5+…+a14=275,ak=61,则k等于()

A.18B.19C.20D.21 5.设Sn是等差数列an的前n项和,若S735,则a4()A.8B.7C.6D.5

6.已知{a*n}是递增数列,且对任意n∈N都有a2n=n+λn恒成立,则实数λ的取值范围是()

A.(-7,+∞)B.(0,+∞)C.(-2,+∞)D.(-3,+∞)

7.设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项为()

A.0B.37C.100D.-37

8.数列{a211

2n}中,a1=1,a2=3,且n≥2时,有a

=,则()n1an1anA.a23)nB.a2n-122

n=(n=(3)C.an=n2D.an=n1

9.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于()

A.50B.100C.150D.200

10.设{a是公差为d=-1

n}2的等差数列,如果a1+a4+a7…+a58=50,那么a3+a6+a9+…+a60=()

A.30B.40C.60D.70

11.一个数列的前n项之和为Sn=3n2+2n,那么它的第n(n≥2)项为

()

A.3n2B.3n2+3nC.6n+1D.6n-1

12.设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()

A.1B.2C.4D.6

二、填空题

13.等差数列{an}中,a3+a7+2a15=40,则S19=___________

14.有两个等差数列{a若a1a2n}、{bn},an3n1a2n3,则13b1b2bnb=

1315.在等差数列{a公差为1

n}中,2,且a1+a3+a5+…+a99=60,则a2+a4+a6+…+a100=_________

16.在等差数列{an}中,若a1+3a8+a15=120,则2a9-a10=________

17.设Sn为等差数列an的前n项和,S4=14,S10-S7=30,则S9= 18.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项的和

等于

19.设等差数列{an}的前n项和为Sn,若S39,S636,则a7a8a9

三、计算题

20.求数列

112,123,1341n(n1)....前n项的和.作者QQ:11689037

21.求数列an=3

n(n2)的前n项和.22.已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求其通项an.23.已知等差数列{an}前n项和Sn=-n(n-2),求{an}通项公式

24.已知数列{an}中,a1=0,a2=2,且an+1+an-1=2(an+1)(n≥2)

(1)求证:{an+1-an}是等差数列;(2)求{an}通项公式

25.已知等差数列{an}前3项和为6,前8项和为-4

(1)求数列{an}的前n项和Sn;(2)求数列{Snn

}的前n项和Tn

26.已知数列an的首项为a1=3,通项an与前n项和sn之间满足

2an=sn·sn1(n≥2).(1)求证:1

等差与等比数列综合专题练习题 篇6

(三)等差数列求和

知识精讲

一、定义:一个数列的前n项的和为这个数列的和。

二、表达方式:常用Sn来表示。

三:求和公式:和(首项末项)项数2,sn(a1an)n2。

对于这个公式的得到可以从两个方面入手:

(思路1)1239899100

101505050

(1100)(299)(398)(5051)共50个101(思路2)这道题目,还可以这样理解:

和=12349899100+和100999897321 2倍和101101101101101101101101505050。即,和(1001)100

2四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

(436)922091800,譬如:① 48123236题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209;

(165)33233331089,② 656361531题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333。

例题精讲: 例1:求和:

(1)1+2+3+4+5+6 =(2)1+4+7+11+13=(3)1+4+7+11+13+„+85= 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29 和=(1+85)×29÷2=1247 答案:(1)21(2)36(3)1247

例2:求下列各等差数列的和。

(1)1+2+3+4+„+199(2)2+4+6+„+78(3)3+7+11+15+„+207 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(1)式=(1+199)×199÷2=19900 答案:(1)19900(2)1160(3)5355

例3:一个等差数列2,4,6,8,10,12,14,这个数列的和是多少?

分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8756

答案:56

例4:求1+5+9+13+17„„+401该数列的和是多少。

分析:这个数列的首项是1,末项是401,项数是(401-1)÷4+1=101,所以根据求和公式,可有:

和=(1+401)×101÷2=20301 答案:20301

例5:有一串自然数2、5、8、11、„„,问这一串自然数中前61个数的和是多少?

分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+(61-1)×3=182 根据求和公式:和=(2+182)×61÷2=5612 答案:5612

例6:把自然数依次排成“三角形阵”,如图。第一排1个数;第二排3个数;第三排5个数;„

求:

(1)第十二排第一个数是几?最后一个数是几?

(2)207排在第几排第几个数?

(3)第13排各数的和是多少?

分析:整体看就是自然数列,每排的个数的规律是1,3,5,7...即为奇数数列 若排数为n(n≥2de 自然数),则这排之前的数共有(n-1)(n-1)个。

(1)第十二排共有23个数。前面共有(1+21)×11÷2=121个数,所以第十二排的第一个数为122,最后一个数为122+(23-1)×1=144(2)前十四排共有196个数,前十五排共有225个数,所以207在第十五排,第十五排的第一个数是197,所以207是第(207-197=10)个数

(3)前十二排共有144个数,所以第十三排的第一个数是145,而第十三排共有25个数,所以最后一个数是145+(25-1)×1=169,所以和=(145+169)×25÷2=3925 答案:(1)122;144(2)第十五排第10个数(3)3925

例7:15个连续奇数的和是1995,其中最大的奇数是多少?

分析:由中项定理,中间的数即第8个数为:199515133,(158)147。所以这个数列最大的奇数即第15个数是:1332答案:147。

例8:把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少? 分析:由题可知:由210拆成的7个数必构成等差数列,则中间一个数为210÷7=30,所以,这7个数分别是15、20、25、30、35、40、45。

即第1个数是15,第6个数是40。答案:第1个数:15;第6个数:40。

例9:已知等差数列15,19,23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?

分析:公差=19-15=4 项数=(443-15)÷4+1=108 倒数第二项=443-4=439 奇数项组成的数列为:15,23,31„„439,公差为8,和为(15+439)×54÷2=12258 偶数项组成的数列为:19,27,35„„443,公差为8,和为(19+443)×54÷2=12474 差为12474-12258=216 答案:216

例10:在1~100这一百个自然数中,所有能被9整除的数的和是多少?

分析:每9个连续数中必有一个数是9的倍数,在1~100中,我们很容易知道能被9整除的最小的数是991,最大的数是99911,这些数构成公差为9的等差数列,这个数列一

(999)112594. 共有:111111项,所以,所求数的和是:9182799也可以从找规律角度分析. 答案:594

例11:一串数按下面的规律排列:1、2、3、2、3、4、3、4、5、4、5、6„„问:从左面第一个数起,前105个数的和是多少?

分析:这些数字直接看没有什么规律,但是如果3个一组,会发现这样一个数列:6,9,12,15......即求首项是6,公差是3,项数是105÷3=35的和

末项=6+3×(35-1)=108

和=(6+108)×35÷2=1995 答案:1995

16例12:在下面12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中

10、已经填好,这12个数的和为。

‍‍‍ ‍ ‍‍‍ ‍ ‍‍‍ ‍ ‍‍‍ ‍ ‍‍‍ ‍16 ‍‍‍ ‍ ‍‍‍ ‍10 ‍‍‍ ‍ ‍‍‍ ‍ ‍‍‍ ‍

分析:由题意知:这个数列是一个等差数列,又由题目给出的两个数10和16知:公差为2,那么第一个方格填26,最后一个方格是4,由等差数列求和公式知和为:(426)122180。答案:180。

本讲小结:1.一个数列的前n项的和为这个数列的和,我们称为。

2.求和公式:和(首项末项)项数2,sn(a1an)n2。3.对于任意一个奇数项的等差数列,各项和等于中间项乘以项数。

练习:

1.求和:(1)1+3+5+7+9=(2)1+2+3+4+„+21=(3)1+3+5+7+9+„+39= 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。答案:(1)25(2)231(3)400

2.求下列各等差数列的和。(1)1+2+3+„+100(2)3+6+9+„+39 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。答案:(1)5050(2)273

3.一个等差数列4,8,12,16,20,24,28,32,36这个数列的和是多少? 分析:根据中项定理,这个数列一共有9项,各项的和等于中间项乘以项数,即为:20×9=180 答案:180

4.所有两位单数的和是多少?

分析:即求首项是11,末项是99的奇数数列的和为多少。

和=(11+99)×45÷2=2475 答案:2475

5.数列1、5、9、13、„„,这串数列中,前91个数和是多少? 分析:首项是1,公差是4,项数是91,根据重要公式,可得:

末项=1+(91-1)×4=361 和=(1+361)×91÷2=16471 答案:16471

6.如图,把边长为1的小正方形叠成“金字塔形”图,其中黑白相间染色。如果最底层有15个正方形,问:“金字塔”中有多少个染白色的正方形,有多少个染黑色的正方形? 分析:由题意可知,从上到下每层的正方形个数组成等差数列,2,an15,所以n(151)218,其中a11,d(18)8236 所以,白色方格数是:1238(17)7228。

黑色方格数是:1237答案:28(2005200620072008200920102011)2008。7.分析:根据中项定理知:200520062007200820092010201120087,所以原式 2008720087。

答案:7。

8.把248分成8个连续偶数的和,其中最大的那个数是多少?

分析:公差为2的递增等差数列。

平均数:248÷8=31,第4个数:31-1=30;首项:30-6=24;末项:24+(8-1)×2=38。

即:最大的数为38。答案:38

9.求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。

分析:解法1:可以看出,2,4,6,„,2000是一个公差为2的等差数列,1,3,5,„,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000 解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000 答案:1000

10.在1~100这一百个自然数中,所有不能被9整除的数的和是多少?

分析:先计算1~100的自然数和,再减去能被9整除的自然数和,就是所有不能被9整除的12(1)001,自然数和了.9182799(999)112594,所有不能被9整除的自然数和:50505944456.如果直接计算不能被9整除的自然数和,是很麻烦的,所以先计算所有1~100的自然数和,再排除掉能被9整除的自然数和,这样计算过程变得简便多了。答案:594

11.一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?

分析:观察发现,这堆钢管的排列就是一个等差数列:首项是3,公差是1,末项是10,项数是8 根据求和公式,和=(3+10)×8÷2=52(根)

所以这堆钢管共有52根。

答案:52根。

12.求100以内除以3余2的所有数的和。

等差与等比数列的应用 篇7

广东省深圳中学 黄文辉

一、教学内容及解析

结合《考试说明》和近几年的高考数列真题,高考对数列的考查主要是从两个角度:(1)考查等差、等比数列的基本量,基本的求和;(2)利用等差、等比数列来研究一般的数列问题.

等差等比数列既是一个重要的考点,也是研究其它数列问题的一个重要的模型,碰到一般的数列问题,我们的基本策略是转化为等差等比数列问题,利用等差等比数列的模型来处理,这既体现了化归与转化的数学思想方法,也渗透了数学建模的核心素养.

二、教学目标及目标解析 1.教学目标

(1)让学生掌握如何合理的构建函数方程模型;(2)让学生体会数列是特殊的函数;

(3)通过转化问题的过程,培养学生构建模型解决问题的意识. 2.目标解析

(1)理解等差、等比数列的基本特征,并利用其特征来研究对应数列问题;(2)利用等差、等比数列的模型来发现规律并表达规律;

(3)在应用等差、等比模型解决数列问题过程中,渗透了化归与转化的数学方法,并体现了数学建模的核心素养.

基于上述分析,本节课的教学重点定为:利用等差、等比数列解决一般数列问题.

三、教学问题诊断

1.学生对等差、等比的基本特征不清楚,导致解题方向不明确,缺乏化归的目标; 2.学生不能够很好的体会“用等差等比数列模型来发现规律并表达规律”,不能把较为复杂的数列用等差等比数列进行解构.

基于上述分析,本节课的教学难点定为:利用等差、等比数列模型解决一般数列问题.

四、教学支持条件

1.等差、等比的定义,通项公式,求和公式等准备知识; 2.指数型函数与二次函数的图象.

五、教学过程与设计(一)基于等差、等比数列“函数特征”的应用

例1. 等差数列{an}的公差d0,anR,前n项和为Sn,则对正整数m,下列四个结论中正确的是

(1)Sm,S2mSm,S3mS2m成等差数列,也可能成等比数列;(2)Sm,S2mSm,S3mS2m成等差数列,但不可能成等比数列;(3)Sm,S2m,S3m可能成等比数列,但不可能成等差数列;(4)Sm,S2m,S3m不可能成等比数列,也不可能成等差数列.

A.(1)(3)

B.(1)(4)

C.(2)(3)

D.(2)(4)解:法一:(3)若Sm,S2m,S3m成等比数列,则S2mSmS3m,因为S2m2Smmd,S3m3Sm3md,所以原问题转化为:存在d0,使得关于Sm的方程:(2Smmd)Sm(3Sm3md)有解,222因为(2Smmd)Sm(3Sm3md)可转化为:(Sm222222122342md)md0,24因为当d0时,(Sm22122342md)md0恒成立,242故方程(2Smmd)Sm(3Sm3md)无解,所以Sm,S2m,S3m不可能成等比数列; 即关于m的方程:m2d20有解,因为d0,所以此方程无解,故Sm,S2m,S3m不可能成等比数列;

(4)若Sm,S2m,S3m成等差数列,则2S2mSmS3m,因为S2m2Smmd,S3m3Sm3md,所以原问题转化为:存在d0,使得关于m的方程:2(2Smmd)Sm(3Sm3md)2222有解,即关于m的方程:m2d20有解,因为d0,所以此方程无解,故Sm,S2m,S3m不可能成等差数列;

解法二:(3)Sm,S2m,S3m可能成等比数列,则点(m,Sm),(2m,S2m),(3m,S3m)分布在指数型曲线ypqx上,又因为等差数列的前n项和是落在函数yax2bx对应的曲线上,因为,当x0时,两曲线最多只有两个公共点,故Sm,S2m,S3m不可能成等比数列; 同理,Sm,S2m,S3m不可能成等差数列.练习1.设等差数列{an}的前n项和为Sn,Sm12,Sm0,Sm13,则m A.3

B.4

C.5

D.6

【设计意图】利用等差等比数列的函数特征来研究数列问题,充分体现了数列是特殊的函数.

(二)基于等差、等比“通项公式”的应用

例2.已知数列{an}满足:a11,an12an1,求an. 练习2. 若a1b1,a1b12,an+1bn1a1,bn+1n,求an,bn.22【设计意图】把递推公式化归为等差型或等比型数例进行研究,充分体现等差等比数列通项公式的推导方法的应用.

(三)基于等差、等比“求和公式”的应用 例3.已知数列{an}满足a11,an13an1.(I)证明{an}是等比数列,并求{an}的通项公式; 121113.(II)证明a1a2an2解:(Ⅰ)证明:∵an13an1,∴an1113(an),22123,又a13,即:1122(an)213∴{an}是以为首项,3为公比的等比数列.

22an113n13n1 ∴an3,即an2221213n1(nN*),(Ⅱ)证明:由(Ⅰ)知an,∴nn1a3132n11()n11111133[1(1)n]3,12n∴1a1a2an33323213故:1113.a1a2an2【设计意图】利用无穷递缩等比数列的求和公式的特点进行替换,充分体现模型的价值.

(四)基于等差等比“模型”的应用

例4.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是是20,21,22,依此类推.求满足如下条件的最小整数N:N100且该数列的前N项和为2的整数幂.

A.440 B.330

C.220

D.110

解:由题意得,数列如下:

1,1,2,1,2,4,1,2,4,,2k1该数列的前k行的项数之和为12k则该数列的前

k(k1)2k(k1)项和为: 2k(k1)k1k1S1(12)(122)2k2,2上面求和中的第k项为122k112k2k1 12所以可以看成是求数列{2k1}的前k项和,即

k(k1)k1123kS1(12)(122)21212121 2(2222k)k2k1k2

要使k(k1)100,有k14,此时k22k1,所以k2是第k1组等比数列21,2,,2k的部分和,设k2122t12t1,所以k2t314,则t5,此时k25329,所以对应满足条件的最小整数N

练习3.数列{an}满足an1(1)an2n1,则{an}的前60项和为

. 解:由an1(1)an2n1得,nn29305440,故选A.2an2(1)nan12n1(1)n[(1)n1an2n1]2n1an(1)n(2n1)2n1,)2n1,也有an3an1(1)(2n1)2n3,两式相即an2an(1)(2n1n加得anan1an2an32(1)4n4,设k为整数,nn则a4k1a4k2a4k3a4k42(1)于是S604k14(4k1)416k`10,14K0(a144k1a4k2a4k3a4k4)(16k`10)1830

高考数列专题练习(汇总) 篇8

1.已知等差数列满足:,的前n项和为.

(Ⅰ)求及;

(Ⅱ)令bn=(),求数列的前n项和。

2.已知递增的等比数列满足是的等差中项。

(Ⅰ)求数列的通项公式;

(Ⅱ)若是数列的前项和,求

3.等比数列为递增数列,且,数列(n∈N※)

(1)求数列的前项和;

(2),求使成立的最小值.

4.已知数列{

}、{

}满足:.(1)求;

(2)求数列{

}的通项公式;

(3)设,求实数为何值时恒成立

5.在数列中,为其前项和,满足.

(I)若,求数列的通项公式;

(II)若数列为公比不为1的等比数列,且,求.

6.已知数列中,,(1)求证:数列为等比数列。

(2)设数列的前项和为,若,求正整数列的最小值。

7.已知数列的前n项和为,若

(1)求证:为等比数列;

(2)求数列的前n项和。

8.已知数列中,当时,其前项和满足.

(1)求的表达;

(2)求数列的通项公式;

9.已知数列的首项,其中。

(1)求证:数列为等比数列;

(2)记,若,求最大的正整数.

10已知数列的前项和为,且对任意,有成等差数列.

(1)记数列,求证:数列是等比数列;

(2)数列的前项和为,求满足的所有的值.

11.已知数列的前n项和满足:(为常数,)

(1)求的通项公式;

(2)设,若数列为等比数列,求的值;

(3)在满足条件(2)的情形下,数列的前n项和为.

求证:.

正数数列{an}的前n项和为Sn,且2.

(1)试求数列{an}的通项公式;

(2)设bn=,{bn}的前n项和为Tn,求证:.

13已知数列是公差不为零的等差数列,其前项和为,且,又

成等比数列.

(1)求;

(2)若对任意,都有,求的最小值.

14已知数列满足:.

(1)求证:数列是等比数列;

(2)令(),如果对任意,都有,求实数的取值范围.

在数列中,,(1)设,求数列的通项公式;

(2)求数列的前项和.

16.已知各项均为正数的数列{an}前n项和为Sn,(p

1)Sn

=

p2

an,n

∈N*,p

0且p≠1,数列{bn}满足bn

=

2logpan.

(1)若p

=,设数列的前n项和为Tn,求证:0

Tn≤4;

(2)是否存在自然数M,使得当n

M时,an

1恒成立?若存在,求出相应的M;若不存在,请说明理由.

17.设数列的前n项和为,且对任意正整数n都成立,其中为常数,且,(1)求证:是等比数列;

(2)设数列的公比,数列满足:,求数列的前项和.

END

等差、等比数列性质类比 篇9

一、等差数列:

1.等差数列的证明方法:1.定义法:2.等差中项:对于数列则{an}为等差数列。2.等差数列的通项公式:

an,若2an1anan

2ana1(n1)d------该公式整理后是关于n的一次函数

Sn

n(a1an)n(n1)

2Snna1dSAnBn n223.等差数列的前n项和 1.2.3.abA

2或2Aab 4.等差中项: 如果a,A,b成等差数列,那么A叫做a与b的等差中项。即:

5.等差数列的性质:(1)等差数列任意两项间的关系:如果

an是等差数列的第n项,am是等差

aam(nm)d

数列的第m项,且mn,公差为d,则有n

(2).对于等差数列

an,若m+n=p+q,则am+an=ap+aq。

*SSSSk,S3kS2kakNnn(3)若数列是等差数列,是其前n项的和,那么k,2k

S3k

a1a2a3akak1a2ka2k1a3k

成等差数列。如下图所示:

(4).设数列

SkS2kSkS3kS2k

an是等差数列,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和,S偶S奇

S奇nn1dSSa偶中,S偶n.2,○2当n为奇数时,则奇

则有如下性质: ○1当n为偶数时,二、等比数列:

1.等比数列的判定方法:①定义法若数列。

an

1q(q0)an

2an是等比aaann2n1,则数列②等比中项:若

n1

aaaqqann12.等比数列的通项公式:如果等比数列的首项是1,公比是,则等比数列的通项为。

3.等比数列的前n项和:○1

Sn

a1(1qn)

(q1)

1q

2Sn

a1anq

(q1)

1q

○3当

q1时,Snna1 ab。

4.等比中项:如果使a,G,b成等比数列,那么G叫做a与b的等比中项。那么G5.等比数列的性质:

(1).等比数列任意两项间的关系:如果

an是等比数列的第n项,am是等差数列的第m项,且mn,qanamqnm

公比为,则有

(2)对于等比数列an,若nmuv,则anamauav也就是:a1ana2an1a3an2。

(3).若数列an是等比数列,Sn是其前n项的和,kN*,那么Sk,S2kSk,S3kS2k成等比数

S3ka1a2a3akak1a2ka2k1a3k

列。如下图所示:SkS2kSkS3kS2k

基础练习

一、选择题:

1.已知{an}为等差数列,a2+a8=12,则a5等于()

(A)4(B)5(C)6(D)7

2.设{an}是公比为正数的等比数列,若a11,a5=16,则数列{an}前7项的和为()

A.63B.64C.127D.128

3.设等差数列{an}的前n项和为Sn,若S39,S636,则a7a8a9()

A.63B.45C.36D.274、设等比数列{an}的公比q2,前n项和为SS

4n,则a()

A.2B.4 C.15D.17

25.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成-(A.511个B.512个C.1023个D.1024个

6.已知等差数列{an}中,a2=6, a5=15.若bn=a2n,则数列{bn}的前5项和等于()

(A)30(B)45(C)90(D)186

7.已知数列an*

对任意的p,qN满足apqapaq,且a26,那么a10等于()

A.165B.33C.30D.2

18.设{an}是等差数列,若a23,a713,则数列{an}前8项和为()

A.128B.80C.64D.56

9.设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为()

A.63B.64C.127D.128

10.记等差数列an的前n项和为Sn,若S24,S420,则该数列的公差d=()

A.7B.6C.3D.2

11.记等差数列an的前n项和为Sn,若a11

2,S420,则S6()

A.16B.24C.36D.48

a2,aa1

1n1nln

12.在数列an中,1n,则an=()

2)

A.2lnnB.

二、填空题:

1.等差数列{an}中,a5=24,S5=70,则S10=___

2.等比数列{an}的前n项和为Sn=32n1lnnC.2nlnnD.1nlnn +t,则t=________

3.等比数列{an}中,an>0,a2·a4+2a3·a5+a4·a6=25,则a3+a5=_______

4.设{an}中,an=20-4n,则这个数列前__或____项和最大。

5.已知:两个等差数列{an},{bn}的前n项和分别为An和Bn,且An3n1 n

Bn2n

3求:(1)a15b15=_________(2)an=___________ bn

6.等差数列{an}的公差d1,且前100项和S100=100,则a1+a3 +a5+…a99=__

27.在[1000,2000]内能被3整除且被4除余1的整数个数是________________

8.在数列{an}在中,an4n52*2,a1a2ananbn,nN,其中a,b为常数,则ab

52an4n{a}aaaanbn,nN*,其中a,b为常数,则2n2,19.在数列n在中,linanbnanbn的值是_____________

10.已知{an}为等差数列,a3 + a8 = 22,a6 = 7,则a5 = ____

三、解答题:

1.已知数列

n项和

11111S与SSS与S43453a设Snn345342.是等差数列的前n项和,已知的等比中项为,的等差中项为1,{an}是一个等差数列,且a21,a55。(1)求{an}的通项an;(2)求{an}前Sn的最大值。

求数列

an的通项.

3.等差数列{an}的前n

项和为Sn,a11S39求数列{an}的通项an与前n项和Sn;

等差、等比数列证明的几种情况 篇10

在高中数学教材中,对等差,等比数列作了如下的定义:一个数列从第二项起,每一项与前一项的差等于一个常数d,则这个数列叫等差数列,常数d称为等差数列的公差。一个数列从第二项起,每一项与前一项的比等于一个常数q,则这个数列叫等比数列,常数q称为等比数列的公比。在涉及到用定义来说明一个数列为等差数列或等比数列时,很多时候往往容易忽略定义的完整性,现举一些例子来加以说明。

1、简单的证明

例 :已知数列前n项和snn22n,求通项公式an,并说明这个

数列是否为等差数列。

解:n1时,a1s1123;

n2时,ansnsn1n22nn122n1

2n

1因为n1时,a1211

3所以an2n1

因为n2时,anan12为常数,所以an为等差数列。

2、数列的通项经过适当的变形后的证明

例: 设数列an的前n项的和为Sn,且a11,Sn14an2,nN*。

(1)设bnan12an,求证:数列bn是等比数列;

(2)设cnan,求证:数列cn是等差数列; 2n

证明:(1)n2时

an1Sn1Sn4an4an1,an12an2an2an1,bn2bn

1又b1a22a1S23a1a12

3bn是首项为3,公比为2的等比数列。

(2)bn32n1,an12an32n1,cn1cnan1an113n1a2a32, n1n42n12n2n12n1

又c1a11,2

213cn是首项为,公差为的等差数列。243、证明一个数列的部分是等差(等比)数列

例3:设数列an的前n项的和Snn22n4,nN,⑴写出这个数列的前三项a1,a2,a3;

⑵证明:数列an除去首项后所成的数列a2,a3,a4是等差数列。

S1(n1)解:⑴由sn与an的关系an得到 SS(n2)n1n

a1S1122147

a2S2S1222247

5a3S3S232234757

⑵当n2时,anSnSn1n22n4n12n142n1 2

an1an2n112n12,对于任意n2都成立,从而数列a2,a3,a4是等差数列。

注:由于a2a12,故an1an2不对任意nN成立,因此,数列an不是等差数列。

4、跟椐定义需要另外加以补充的等差(等比)数列的证明。例4:设数列an的首项a11,前n项和sn满足关系3tsn2t3sn13t,求证an为等比数列。

(错证)由题意:3tsn2t3sn13t

3tsn12t3sn23t

两式相减得:3tsnsn12t3sn1sn20

即:3tan2t3an10

所以:an2t3为定值,所以an为等比数列。an13t

由于在证明的过程没有注意到各符号有意义的条件,从而忽略了n的取值范围,导致证明不符合定义的完整性。

正确的证明如下:n3时:

3tsn2t3sn13t

3tsn12t3sn23t

两式相减得:3tsnsn12t3sn1sn20

即:3tan2t3an10 所以:an2t3 an13t

(这只能说明从第二项开始,后一项与前一项的比为定值,所以需要

对第二项与第一项的比另外加以证明,以达到定义的完整性。)

又因为n2时:

3ts22t3s13t

即3ta1a22t3a13t

又因为a11,所以3t3ta2(2t3)3t

所以a2

所以2t3 3ta22t3 a13t

an2t3为定值,所以an为等比数列。an13t所以对任意n2都有

总之,在用定义证明一个数列为等差数列或等比数列的时候,一定要注意下标n的取值范围,不管是anan1aan还是an1an2;n1

an2an1

上一篇:优秀党员先进事迹(抗洪方面)下一篇:汲取教训安全自查汇报