热力学与统计物理学

2024-07-26

热力学与统计物理学(通用9篇)

热力学与统计物理学 篇1

Thermodynamics and Statistical Mechanics

课程编号:适用专业:物理学(本科)

学时数:64学分数:4执笔者:郑燕

一、课程性质和目的1、课程的性质:

热力学与统计物理学是物理学专业一门理论必修主干课。

2、课程的目的:

本课程的目的在于针对热运动的特点,建立一套热力学和统计物理的基本知识和思想方法,从而为研究热运动的规律、与热运动有关的物性及宏观物质系统的演化打下基础,为进一步学习固体物理、天体物理等学科作好准备。

二、课程的基本要求

(1)首先必须使学生建立概率论方法的观念。热力学统计物理研究由大量微观粒子或准粒子组成的,具有大量随机变化自由度的宏观系统。由于系统的自由度数目非常大和自由度的随机性,即使我们彻底地掌握了单个粒子的运动规律和粒子间相互作用的规律,也不可能写出全部运动方程,更无法准确知道并利用全部初始条件求解运动方程。必须明确的是,不能用纯粹力学方法研究有大量随机自由度的宏观系统,不仅是由于技术上的困难,更重要的是,由于大量随机自由度的存在,导致性质上出现全新的规律。因此研究这类系统的方法必须有本质上的改变,即由确定论的方法改变为概率论的方法。

(2)掌握热力学的基本规律和统计物理的基本理论,理解系统的各种平衡条件和正则分布,了解系统的相变理论,非平衡态统计和涨落理论。会用来解决一些基本的和专业有关的热运动方面的问题。

(3)使学生掌握科学的学习方法,真正达到从学会到会学。可采用从“渗透式”逐步推广到“体会式”的教学法,培养学生有较强的独立思考能力和创造能力,较快进入科学发展的前沿,养成辩证唯物主义的世界观和方法论。

三、课程教学基本内容及各章的基本要求

按照课程建设的总体要求,本着“先进、有效、有用”的原则,按照删、并、减、增、留的“五字方针”对物理学专业的重要基础理论主干课程《热力学与统计物理学》进行认真清理与重构,在此基础上编写出本教学大纲。讲授内容和学时分配如下。

第零章绪论(1学时)

基本要求

(1)热力学与统计物理学的研究对象、研究方法及发展的前沿动态;

(2)学习热力学与统计物理学的意义、目标、方法。

第一章热力学的基本定律(12学时)

1、基本要求

本章是热力学与统计物理学的基础,以热力学第一定律、热力学第二定律和热力学基本方程为重点讲授内容;将热力学系统的平衡态及其描述、平衡定律和温度、物态方程、准静态功、热力学第一定律、热容量和焓、理想气体的内能、绝热过程、卡诺循环、热力学第二定律作为自学内容,这些内容在热学都已学过。

2、教学内容

(1)热力学系统的平衡态及其描述;

(2)平衡定律和温度;

(3)物态方程;

(4)准静态功;

(5)热力学第一定律;

(6)热容量和焓;

(7)理想气体的内能、绝热过程、卡诺循环;

(8)热力学第二定律;

(9)卡诺定理与热力学温标;

(10)克劳修斯等式和不等式;

(11)熵和热力学基本方程;

(12)理想气体的熵;

(13)热力学第二定律的普遍表述;

(14)熵增加原理的简单应用;

(15)自由能和吉布斯函数。

3、本章重难点

(1)本章重点是热力学第二定律和热力学基本方程;内能、焓、熵、自由能和吉布斯函数;

(2)本章的难点为建立熵的概念,应强调其物理意义。

第二章均匀物质的热力学性质(5学时)

1、基本要求

本章是热力学与统计物理的重点内容,以特性函数及其基本微分方程和麦克斯韦关系为重点讲授内容,删去低温的获得一节,将气体的节流过程和绝热膨胀过程作为自学内容。

2、教学内容

(1)内能、焓、自由能和吉布斯函数的全微分;

(2)麦克斯韦关系的简单应用;

(3)气体的节流过程和绝热膨胀过程;

(4)基本热力学函数的确定;

(5)特性函数;

(6)平衡辐射的热力学;

(7)磁介质的热力学。

3、本章重难点

本章重点是特性函数及其基本微分方程和麦克斯韦关系

第三章单元系的相变(6学时)

1、基本要求

本章是热力学与统计物理较为重点的内容,以开放的热力学基本方程为基础重点讲授单元系的复相平衡条件和平衡性质等内容,删去临界现象和临界指数、朗道连续相变理论两节,将临界点和气液两相的转变作为自学内容。

2、教学内容

(1)热动平衡判据;

(2)开系的热力学基本方程;

(3)单元系的复相平衡条件;

(4)单元复相系的平衡性质;

(5)临界点和气液两相的转变;

(6)液滴的形成;

(7)相变的分类。

3、本章重难点

(1)本章重点是开系的热力学基本方程、单元系的复相平衡条件和平衡性质;

(2)本章难点是液滴的形成、二级相变。

第四章多元系的复相平衡和化学平衡(4学时)

1、基本要求

本章是热力学与统计物理中非重点的内容,以多元系的热力学函数和热力学方程为基础重点讲授多元系的复相平衡条件、吉布斯相律、热力学第三定律等内容,删去化学平衡条件和理想气体的化学平衡两节,将二元系相图举例和混合理想气体的性质作为自学内容。

2、教学内容

(1)多元系的热力学函数和热力学方程;

(2)多元系的复相平衡条件;

(3)吉布斯相律;

(4)二元系相图举例;

(5)化学平衡条件;

(7)热力学第三定律。

3、本章重难点

(1)本章重点是多元系的热力学函数和热力学方程、吉布斯相律;

(2)本章难点是热力学第三定律。

第六章近独立粒子的最概然分布(13学时)

1、基本要求

本章是统计物理的基础内容,是学好后续章节的根本,应作为重点内容讲授,重点掌握粒子和系统运动状态的描述、分布与微观态的关系、三种分布。将等概率原理作为自学内容。

2、教学内容

(1)粒子运动状态的经典描述;

(2)粒子运动状态的量子描述;

(3)系统微观运动状态的描述;

(4)等概率原理;

(5)分布和微观状态;

(6)玻耳兹曼分布;

(7)玻色分布和费米分布;

(8)三种分布的关系。

3、本章重难点

(1)本章重点是分布和微观状态的关系、玻耳兹曼分布、玻色分布和费米分布;

(2)本章难点是分布和微观状态的关系,熟练掌握玻耳兹曼分布、玻色分布和费米分布以及三种分布的关系。

第七章玻耳兹曼统计(9学时)

1、基本要求

本章是热力学与统计物理的重点内容,是统计物理的核心章节,以玻耳兹曼分布为基础重点掌握热力学量的统计表达式、统计物理处理问题的方法、玻耳兹曼统计的广泛应用。删去顺磁性固体、负温度状态两节,将理想气体的熵作为自学内容。

2、教学内容

(1)热力学量的统计表达式;

(2)理想气体的物态方程;

(3)麦克斯韦速度分布律;

(4)能量均分定理;

(5)理想气体的内能和热容量;

(6)理想气体的熵;

(7)固体热容量的爱因斯坦理论。

3、本章重难点

(1)本章重点是热力学量的统计表达式、玻耳兹曼统计处理问题的方法;

(2)本章难点是理想气体的内能和热容量、固体热容量的爱因斯坦理论。

第八章玻色统计和费米统计(6学时)

1、基本要求

本章是热力学与统计物理的重点内容,以玻色分布和费米分布为基础重点掌握热力学量的统计表达式;对光子气体、自由电子气体等应用。删去简并理想费米气体简例、准二维电子气体与量子霍尔效应两节,本章无自学要求。

2、教学内容

(1)热力学量的统计表达式;

(2)弱简并玻色气体和费米气体;

(3)光子气体;

(4)玻色-爱因斯坦凝聚;

(5)金属中的自由电子气体;

(6)简并理想费米气体简例。

3、本章重难点

(1)本章重点是热力学量的统计表达式、光子气体;

(2)本章难点是玻色-爱因斯坦凝聚、金属中的自由电子气体。

第九章系综理论(8学时)

1、基本要求

在所研究的问题中计及粒子之间的相互作用,系统的能量表达式包含粒子间的相互作用的势能。

2、教学内容

(1)相空间 刘维尔定理;

(2)微正则分布;

(3)微正则分布的热力学公式;

(4)正则分布;

(5)正则分布的热力学公式;

(6)巨正则分布的热力学公式;

(7)巨正则分布的简单应用。

3、本章重难点

本章重点是正则分布、正则分布、巨正则分布的热力学公式

四、先修课程要求:

高等数学、普通物理、理论力学

五、考核方式

1、成绩评定总则

期末总评成绩由平时成绩和期末卷面成绩构成2、平时成绩评定

平时成绩由作业、提问、考勤、期中成绩累加构成3、期末考核评定

期末总评成绩=平时成绩(占10%)+期末卷面成绩(占90%)

六、建议教材及教学参考书:

教材:

汪志诚,《热力学·统计物理》(第三版),高等教育出版社,2003 主要教学参考书目:

热力学与统计物理学 篇2

1 热力学与统计物理课程教学中存在的主要问题

热统课程内容由热力学和统计物理两部分组成。其中, 热力学是研究热现象的宏观理论, 它从若干经验定律出发, 通过严密的逻辑演绎方法, 最终给出系统的宏观热性质;而统计物理则是研究热现象的微观理论, 它从微观粒子的力学规律出发, 加上统计假设, 获得系统的宏观性质。从内容上来看, 热统课程的理论性强, 教学内容繁杂。尤其, 在当前高校推行素质教育和培养应用型人才的指导下, 基础理论课课程教学学时均有不同程度的压缩。我校热统课程安排为40个学时, 由此带来了教学学识少和教学内容多的严重矛盾。我们根据我校材料物理专业特色方向和后续课程, 在热统教学内容上做出了适当的调整。

现行的热统教材理论性强, 较适合理科生使用, 缺乏较合适的工科材料类学生使用的热统教材。在组织教学中, 我们以汪志诚编写的《热力学·统计物理 (第四版) 》作为主要参考教材[2], 同时综合了多本经典教材, 如:胡承正编著的《热力学与统计物理学》, 包景东编著的《热力学与统计物理简明教程》等[3~4]。根据我校材料物理专业培养目标和专业特色方向, 本着“先进、有效、有用”的原则, 对热统课程的教学内容应该进行认真清理与重构, 形成适合本校实际的课程讲义。

在教学方法和考核方式上也应根据我校实际进行相应的改革。热统课程是一个理论性强的课程, 其中的物理概念抽象, 物理公式繁杂。安徽工业大学材料物理专业是在工科背景下成立并发展起来的, 学生的数理基础相对薄弱, 在学习的过程中会有些吃力。长期的教学实践告诉我们, 如果采取传统的灌输式教学方法, 只能使热统课堂教学枯燥无味, 学生被动的接受知识, 失去了学习兴趣, 甚至对后续的专业课学习产生抵触情绪。另外, 传统的闭卷考试常造成学生不重视平时的学习过程, 期末复习只看教学课件, 期待老师划重点, 搞突击记忆。

针对上述现状, 我们尝试着进行了教学内容, 教学方法和考核方式的改革和实践。

2 教学内容的改革

2.1 优化教学内容

热统课程的热力学部分与先修课程, 如大学物理、物理化学和工程化学基础的部分内容重复率较高。我们在充分了解本专业学生的先修课程和后续课程的教学内容后, 对与其他课程有交叉重叠的部分进行了压缩和删减。比如:热力学部分的热力学基本定律, 热力学函数, 化学平衡条件, 理想气体的化学平衡等都在先修课程里面作为重点内容进行讲授的。在实际教学时, 只作复习性的简述或以学生自学的方式完成。但为保证热力学基本概念与规律的严格性与系统性, 对重要的基本概念和定律还是进行重点讲解。通过这样的调整, 节省了热力学部分的教学学时, 加大了统计物理部分的学时讲授。统计物理是从宏观系统的微观结构入手, 从内容上与量子力学和固体物理课程联系紧密, 也为后续的计算材料学课程, 甚至可为本科毕业论文工作提供前期的知识准备。在统计物理教学部分, 将在先修课程中学习过的麦克斯韦速度分布率和能均分定理略讲;固体的热容量的德拜理论是固体物理课程的重点教学内容, 在热统教学中, 这部分只简单提及。经过这样的教学内容优化后, 节省了课时, 加强了课程之间的联系, 提高了教学效率。

2.2 适当引入材料学科前沿内容

创新型人才的培养要求课程内容要体现先进性和现代化。通过合理的补充与热统课程相关的材料学和物理学最新的学术成就与进展, 有意识的突出课程的广度, 丰富和具体化基本理论内容。增加学科前沿内容, 我们从两个方面进行。一方面是在讲授基础理论知识的同时, 引入与该知识密切相关的科学技术发展的介绍。例如:在对温度和温标作复习简述的时候, 介绍测温仪表和测温技术。电阻温度计, 热电偶测温技术, 红外测温技术等在后续的材料类课程学习, 课程设计和实验及毕业论文工作是非常重要的一部分。在讲授气体的节流和膨胀过程一节时, 介绍了获得低温的技术, 以及与低温有关的材料性能的变化, 超导电现象的发展历史及科研现状等;在讲授单元系的相变时, 加强了对二级相变和临界现象的讲授, 介绍了磁性材料, 超导材料, 超流体等方面的最新研究进展;在统计物理部分, 介绍玻色-爱因斯坦凝聚的新进展, 讲授统计物理部分的金属中的自由电子时, 适当介绍计算材料学和计算物理方面的研究现状等。另一方面是通过鼓励学生现场听取相关的学术报告, 或者观看相关报告的视频。通过前沿知识的适当引进, 开阔了学生的视野, 激发了学生的学习和科研兴趣, 获得了较好的教学效果。

2.3 注重理论联系实际

材料类专业是应用性很强的专业, 要求热统课程教学内容要体现实用性, 加强理论与实际的联系。我们鼓励学生通过本科生科研训练计划 (SRTP) 和大学生创新创业计划的方式参与相关教师的课题研究, 或者开设课程设计和实验。如在讲授相变的章节时, 为了让学生加深对二级相变的理解, 开设了高温超导转变的实验, 巨磁电阻材料的相变实验等。组织学生参观学校相关的实验室, 如参观计算材料实验室, 使学生了解相图的理论计算方法, 第一性原理计算及材料设计方法。经过这样的训练, 学生对物理概念有了深入的理解, 提高学生的应用能力, 研究能力和创新能力。

3 教学方法和考核方式的改革

3.1 学生为主体, 教师为主导

在组织课堂教学时, 认真贯彻以学生为主体, 教师为主导的教学思想, 加强师生互动, 争取使学生由被动接受知识变为主动探索知识。在课前, 给学生预留思考题进行课前预习, 让学生带着问题去听课, 做到有的放矢。在组织教学时, 对重点章节进行精讲, 适时开展物理基本概念和基本问题的讨论, 启发学生思考和推理。对相对容易理解的章节组织学生自学, 或者制作成ppt课件, 在课堂上讲解, 教师在做总结式讲授。课后, 要求学生独立完成作业和习题, 以期加深对基本概念的理解和应用。

3.2 重物理思想简化数学推导

在组织教学的过程中, 重点讲解基本概念, 突出物理思想。借助于多媒体教学, 对于较抽象、难理解的概念和原理, 可通过制作图文并茂的课件, 或者观看相关视频的方式, 使抽象的概念形象化, 增强学生的感性认识。适当补充基本概念辨析题和思考题以促进学生对基本概念的深入理解和掌握。对于必要的数学推导, 使用板书的方式进行详解和推导, 留给学生足够的时间思考并跟上教师的思路。

3.3 考核方式的改革

考核是教学过程的主要环节之一, 应具有实用性和针对性, 并能体现学生的综合素质。我们在考核方面, 加大了平时成绩的比例, 增加了课堂回答问题, 课堂讨论, 撰写科研小论文等环节的考核。在期末的闭卷考试中, 减少死记硬背的概念题和公式, 把考核重点放在学生对基本物理概念的理解和基本理论知识的实际应用上。

4 实践效果

在教学实践中逐步形成了适合我校材料物理专业实际的热统课程讲义。实践证明, 改革措施在缓解授课学时与教学内容的矛盾, 拓宽学生知识面等方面效果显著。尤其, 热统课程作为材料物理专业的前期先修基础课, 对后续的课程学习起着承上启下的重要作用。通过上述的教学改革后, 学生的学习积极性大大提高, 热爱本专业的学习, 踊跃参加SRTP和大学生创新创业的计划, 甚至部分同学提前加入教师团队的课题组, 对未来的工作或者继续深造充满信心。

摘要:本文基于材料物理专业的特点, 提出了热力学与统计物理课程教学内容, 教学方法和考核方式等方面的改革内容和实施办法。经过三年的教学实践, 收到良好的教学效果。

关键词:热力学与统计物理,教学内容,教学方法,考核方式,材料物理专业

参考文献

[1]方道来, 童六牛, 夏爱林, 等.材料物理专业定位及课程体系设置的探索[J].安徽工业大学学报:社会科学版, 2011 (23) :104-105.

[2]汪志诚.热力学·统计物理[M].北京:高等教育出版社, 2010.

[3]胡承正.热力学与统计物理学[M].北京:科学出版社, 2009.

热力学与统计物理课程教学探究 篇3

关键词 热力学 统计物理 课程教学 教学策略

中图分类号:G424 文献标识码:A

Explorations of Thermodynamics and Statistical Physics Teaching

ZHANG Jin

(Mathematics and Physics Department of Anhui Jianzhu University, Hefei, Anhui 230601)

Abstract The paper analyzes some teaching problems of Thermodynamics and Statistical physics, carries on research of effective teaching, has discussion of teaching content, teaching approaches and teaching methods for improvement in teaching quality of Thermodynamics and Statistical physics.

Key words Thermodynamics; statistical physics; course teaching; teaching strategies

作为大学物理专业的四大力学之一——热力学与统计物理是一门学生感觉难学,教师感觉难教的课程。学生总体感觉这门课程公式和概念较多、对高等数学的要求较高、与日常生活又比较脱离,不知道学了之后有什么用。而教师普遍感觉内容较为零散,与其他物理课程重复内容又较多,因此往往感觉较难将课程前后融会贯通,将公式和概念讲得浅显易懂又具有一定深度。本文对热力学与统计物理课程的现状进行分析,分别对教学内容、教学方法、教学手段进行了探讨,以激发学生的学习兴趣,提高教学质量。

1 课程内容的优化

热力学与统计物理中的部分内容与其他物理专业课程有一定的重复。例如第一章热力学的基本规律,该部分内容在前期课程热学中基本都已学过。因此在讲解该部分内容时,学生难免会感到没有新鲜感。但是这部分内容对热力学与统计物理后面章节的内容又非常重要,是后期内容的基础,尤其是热力学三定律,如果理解不透彻,后面章节的内容就更难以理解。同时第一章热力学的基本规律又不完全等同于热学课程所学。例如对温度的理解,热学强调温度是冷热程度的度量,而在热统中则更着重于强调温度是一个态函数。总体来说热学强调热的本质,热究竟是什么,怎样发生等问题,而热统则是研究热的传递和循环等过程,与热学相比更侧重于动态的研究。因此对于和热学重复的内容部分,既不能完全不讲,也不能细枝末节地详细讲述,而应当重点讲述一些重要概念不同于热学的理解方式。

另外,对于热统后半部分统计物理学,学生是首次接触统计物理,并且统计物理与前面部分热力学研究方法上又完全不同,所以学习这部分内容时学生会觉得很吃力。因此对统计物理前半部分内容要在合理安排课时的前提下尽可能讲得详细透彻,使学生能听懂,能理解和掌握,后半部分内容处理方法和前面基本相同,因此可以相对简单地讲解。同时热力学和统计物理并不是完全分割独立的两部分,实际上它们相辅相成,互为补充,统计物理的很多结论回归到热力学的结果。因此统计物理这部分内容也应着重强调和热力学内容的相互呼应。使学生感觉到这两部分是整体,而不是零散、毫不相关的内容。

2 教学方法的几点建议

2.1 公式的讲解

热统这门课程难学的一个重要原因就是公式非常多,而且很多涉及偏微分甚至有的还不是完全微分。例如内能的微变量用,是个全微分,而微功用表示,不是个全微分,而一个公式里面往往可能既涉及全微分也有不完全微分,因此一定要区分和解释清楚。比如内能要强调是态函数与过程无关,因此用表示,而做功与过程密切相关,因此不是全微分。这些一定要讲解清楚,否则学生非常容易搞混淆。热统这门课程里的公式的另一个特点是多而且近似,例如麦氏关系,单纯地背下来实际十分困难,因此需要寻找公式的规律,甚至可以编一些顺口溜等,便于学生的记忆。另外,讲清楚公式从何而来,又有哪些应用,往往对公式的记忆和理解也很重要,进而也能让学生搞清楚这门课程的学习到底有什么用,而这离不开习题的讲解,因此对于难以理解的公式,适当的习题有助于学生对公式的学习。

2.2 概念、定理和定律的讲解

热统书中也涉及到很多物理概念、定理和定律,而教材中往往因为篇幅有限并没有一一交待这些概念、定理和定律的来龙去脉。例如卡诺定理,学完热力学第二定律后紧跟着下一节就是卡诺定理,但教材中只介绍了卡诺定理的具体内容和简单推论,学生学起来就觉得很茫然,不知道为什么要学卡诺定理,和热力学第二定律有什么关联,兴趣也就不大。往往教师费劲讲了半天,学生听得一知半解。这时候如果在讲卡诺定理之前,先讲清楚为什么提出了卡诺定理,卡诺当年是在什么情况下提出,遇到了哪些困难,他对热机的发展有了什么推动作用,也就是略微讲解部分卡诺定理提出的科学史,这样既可以吸引学生的兴趣,而且对于这个定理,学生能够知其然且知其所以然,同时也启迪了学生勇于创新的精神。这样才能真正让学生感受到热统这门课的魅力,体会它的思想和方法,真正意义上培养学生的思维能力和创新能力。

2.3 前沿科技知识的引入

大学生教学不同于高中教学,学生不仅应该掌握基本的理论,对一些科技前沿也应当有适当了解。这要求教师不仅能很好地把握教材内容,同时也要常了解相关的科研动态。前沿科技知识介绍不仅能提高学生的学习兴趣,而且启发学生的思维能力,甚至于对学生在以后考研选择方向时也有很大益处。

3 教学手段的改进

目前很多高校基本都具备多媒体教学条件,提倡板书和多媒体结合。板书多用于复杂公式的推导,诚然公式的推导需要板书的帮助,但是板书应该不仅仅用于枯燥的公式推导,有时候将整堂课的主体框架,甚至大的标题之间的联系写在板书上,这样学生感觉逻辑性会更强,环环相扣,有利于学生整体知识框架的构建,和对课程内容有更好的理解。而多媒体教学中幻灯片可以适量减少文字部分,图文并茂、生动活泼的PPT很容易吸引学生,有些部分内容如果辅助动画演示或者视频将可以达到更好的效果。比如玻尔兹曼分布,玻色分布和费米分布,三种分布的区别和联系,如果完全靠教师的讲解,有时候会有理解上的困难,但如果辅助了动画,学生一目了然,更容易理解,也更容易记忆。但是也非动画和视频越多越好,过多的情况下,反而让人感觉重点不突出,本末倒置,因此板书和多媒体的有效结合十分重要。这就需要教师很好地把握教材,课下须花大量精力搜集丰富的课外材料,做好备课工作。

4 结语

总之,要教好热统这门课并非易事,需要教师对课程内容进行优化,对教学方法和教学手段进行研究,寻找合适的方法和手段,这需要教师也要不断学习和反思,不断改进,在热统的教学过程中和学生一起共同学习成长,实现热统教学的真正目的。

参考文献

[1] 包景东.热力学“时间之箭”.大学物理,2011.30(10).

[2] 林宗涵.热力学与统计物理学.北京大学出版社,2007.

[3] 陈志勇.大学教师教学发展中心:是什么?做什么?高等工程教育研究,2013.6:92.

热力学与统计物理学 篇4

由全国高校热力学与统计物理教学研究会主办,兰州大学承办的2006年《热力学与统计物理》教学及学术研讨会于7月16 日至7月23 日在兰州举行。

来自北京大学、中国科学技术大学等23所高校34名代表参加了会议。兰州大学物理科学与技术学院副院长刘肃教授主持了开幕式,兰州大学党委副书记、副校长甘晖研究员参加了开幕式并致欢迎词。全国高校热力学与统计物理教学研究会主任委员、内蒙古大学梁希侠教授主持了大会报告。

大会报告有:人类认识世界-教学与科研(兰州大学段一士教授);非等压一级相变(华中师范大学郑小平教授);21世纪的现代热力学(复旦大学王季陶教授)等。与会代表还听取了《电动力学》和《现代光学》课程教学研讨会的大会报告。梁希侠主任就教育部高等学校物理学类专业教学指导分委员会关于物理学专业(本科)教学规范草案的相关内容做了介绍。延边大学郭振平教授等代表就《热力学与统计物理》及相关课程教学体系、教学方法与内容改革的经验和问题做了报告和情况介绍。

与会代表对《热力学与统计物理》及相关课程教学体系、教学方法与内容改革的经验和问题进行了热烈、认真的讨论。与会代表认为,今后在《热力学与统计物理》课程教学中,要继续提倡教学体系、内容和模式的多样化,注重学生的理论基础培养及演绎、运算能力训练,扩大学生的知识面、激发创新思想和思维能力训练。要根据不同类型学校的具体情况和课程基本内容和基本要求,切合实际地进行教学体系、教学内容和教学方法等方面的改革,在学时和学分压缩的情况下,保证教学质量和教学效果。与会代表还认为:以后此类会议要安排更多的专题报告和相关科学前沿动态介绍,以吸引更多的专家学者参加交流,总结和汲取先进经验,提高教师的学术和教学水平,对《热力学与统计物理》课程教学改革和教学质量提升起到积极的促进作用。

会议期间,经全国高校热力学与统计物理教学研究会第五届委员会(扩大)第三次

会议讨论,决定换补南开大学赵柳教授(替换胡北来教授)为全国高校热力学与统计物理教学研究会第五届委员会委员。

兰州大学领导对本次会议非常重视,物理科学与技术学院为会议的召开作了大量辛

勤工作,并给予经济资助,保证了会议的圆满成功。全体代表对他们表示衷心的感谢。

经与会代表协商、讨论,初步议定下次研讨会暨研究会委员会议于2007年8月在延吉举行,由延边大学承办。

全国热力学与统计物理教学研究会

兰州大学物理科学与技术学院(代章)

热力学统计物理试题 篇5

适用于200×级本科物理学专业

(200×-200×学第×学期)

1.(10分)证明范氏气体的定容热容量只是温度的函数,与比容无关.2.(20分)

dL

dT试证明,相变潜热随温度的变化率为 vTTLcp-cpvpTL vvp

如果相是气相,相是凝聚相,试证明上式可简化为:

dL

dTcpcp 

3.(10分)若将U看作独立变数T, V, n1,… nk的函数,试证明:

(1)U

iniUniVUV

(2)uiUniviUV

4.(20分)试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为

SNkPslnPs

s

式中Ps是总粒子处于量子态s的概率,Ps

和。

esNesZ1,s对粒子的所有量子态求

5.(20分)铁磁体中的自旋波也是一种准粒子,遵从玻色分布,色散关系是Ak.试证明在低温下,这种准粒子的激发所导致的热容与T

3/22成正比.6.(20分)在极端相对论情形下电子能量与动量的关系为cp,其中c为光速.试求自由电子气体在0K时的费米能量,内能和简并压.附标准答案

1.解证:范氏气体p2vbRT

(10分)v

RaUp

由式(2.2.7)  p2=T-p=T(5分)vbvvTTVaaU=2U(T,v)U0f(T)

vvTv

a

U

CV=f(T);与v无关。(5分)

TV

2.(20分)证明:显然属于一级相变;LT(SS);其中SST,p(T),在p~T相平衡曲线上.dLdT

S



S



SdpS

TT

TpdT



SS

其中:

TT

SPT

 P

dp](5分)dTP

SSdp

[TpdTS

PT

S

又有:CPTS);LT(S

TP

由麦氏关系(2.2.4): 

SV

(5分)

TPpT

上几式联立(并将一级相变的克拉伯珑方程代入)得:

dLdT

cp-cp

v

TT

L

v

pT

L(5分)vvp

~0; p

若相是气相,相是凝聚相;V

V

~0;T

相按理想气体处理。pV=RT

dLdT

cp

cp

(5分)

3.(10分)证明:(1)U(T,V,n1,nk)U(T,V,n1,nk)

根据欧勒定理,xiff,可得

i

xi

U

i

ni

UniUnivi

V

UVUV

(5分)

(2)U

i

ni

V

i

ni(Uni

vi

UV)

nu

ii

i

ui

Uni

U

(5分)V

4.(20分)证明:出现某状态s几率为Ps

设S1,S2,……Sk状态对应的能级s

设Sk+1 ,Sk+2,……Sw状态对应的能级s

类似………………………………

则出现某微观状态的几率可作如下计算:根据玻尔兹曼统计 PS显然NPs代表粒子处于某量子态S下的几率,NPSe

S

e

s

N;

。于是e

S

代表

SK

S

处于S状态下的粒子数。例如,对于s能级e

SS1

个粒子在s上的K个微

观状态的概率为: PSPS

粒子数

P

Sk

se

SSS1



类似写出:PSP

Sk

se

SSS1



(5分)

………………………………………………等等。

于是N个粒子出现某一微观状态的概率。

P

PS

SS

S

P

Sk

se

SSS1



P

Sk

se

SSS1



一微观状态数

1P,(基于等概率原理)

(5分)

Skln

Skln

kW(5分)SSeePPSSSSK1SS1



S

S

SK

S

kelnPS

S1



e

SK1

SW

S

lnP

S

S



将NPSe

S

带入SkNPSlnPS(5分)

5.(20分)证明: 在体积V中,ω到ω+ dω的频率范围内准粒子的量子态数为

4Vh

1/2

g()dpdpBd,(5分)

推导上式时,用到关系pk.这里B为常数.由于准粒子数不守恒,玻色分布中的0.系统的内能为

m

E0

e



1

g()dB0

m

e



3/2

1

d,(5分)

考虑到态密度在高频时发散,需引入截止频率可令

m

.但在低温下1,在积分中

m

.设x,则有

ECT

5/2

0

x

x

3/2

e1

3/2

dxT

5/2,(5分)

ECVT

TV

其中,C为常数.易得

.(5分)

6.(20分)在极端相对论情形下电子能量与动量的关系为cp,其中c为光速.试求自由电子气体在0K时的费米能量,内能和简并压.解: 在体积V中, 到 + d 的能量范围内电子的量子态数为

8Vh

g()dpdp

8Vhc

d

.(5分)

1,0f

0,0.绝对零度时,费米函数为

0

总电子数满足

Nfg()d

8Vhc

d

1/3

8V3hc

0,可求出费米能量

0

3N

8V

hc

.(5分)8Vhc

0

电子气的内能

Efg()d

d

8V4hc

0

N0

.(5分)

气体的简并压

pd

E3V

N4V

0

热力学统计物理试题(D卷) 篇6

适用于2002级本科物理学专业

(2004-2005学年度第一学期)

1.(10 points)Consider(U)=0.Show(U)=0

VT

2.(10 points)Consider C 0and(vpVpT)T0.Show Cp0

3.(20 points)Consider a chemical reaction follows that

2N232H2NH30 Show isopiestic equilibrium constant

Kp2742

21p

If the reaction follows that

N23H22NH30

calculate isopiestic equilibrium constant again.4.(20 points)Use Maxwell velocity distribution law to show the fluctuation of velocity and mean translational energy respectively follows that(v)

()

2kTm(38)232(kT)2

e

0x2xdx2432, e0x2xdx43852

5.(20 points)The electronic density of a metal is 5.91028/m.Calculate the Fermi energy, 3

Fermi velocity and degenerate pressure of this free electronic gas at temperature T=0K.6.(20 points)Use canonical ensemble distribution to calculate the internal energy E, free energy F, chemical potential μ, and pressure p of the ideal gas.附简答:

1.(10 points)Solution

(UV()T=T()T =

pT)V-p;(UV)T=0;pT(pT)V(4 points)

UV

(U,T)(V,T))T(pV

=

(U,T)(p,T)(p,T)(V,T)

=0=(Up)T(4 points)

∵V

(p)T≠0;(Up)T=0(2 points)(10 points)Solution

CpCV

pVTTVT

p

(4 points)

pVTVp

T

=-1(3 points)

VpT

pV

Cp CVT

VTTppV

 C 0)T0, thusCpV  0andCv, Cp0(4 points)

Because(3.(20 points)SolutionAssume NH3 with n0 mol, decomposed n0ε mol,the spare part(1-ε)n0 mol,making N2 with

1n0

n0 mol and H2 with

n0 mol.Total number is(1+ε)n0 mol.xN

n0

(1)n0

22;xH2;x NH3;(1)n0(1)n0(1)n0

Isopiestic equilibrium constant

(5 points)

K

p

1

(xN2)2(xH2)2(xNH3)

274

p2

1

1

p

(5 points)

Ifthe reaction follows that

N23H22NH

0

assume NH3 with 2n0 mol, decomposed 2n0ε mol,the spare part 2(1-ε)n0 mol, making N2 withn0 mol and H2 with3n0 mol.Total number is 2(1+ε)n0 mol.xN

n02(1)n0

;xH2

3n02(1)n0

;x NH3

2(1)n02(1)n0

;(5 points)

Isopiestic equilibrium constant

K

p

(xN2)(xH2)(xNH3)

132

p

132

2(1)

3

2(1)

(1)(1)

22

p

27

16(1)

p

(5 points)

4.(20 points)Solution

(v)2v22(5 points)

In the scope of V and dpx dpy dpz , the molecule number follows that

Vh

--

12mkT

(pxpypz)

e

dpxdpydpz

f(vx, vy,vz)dvxdvydvzmn

2kT

e

m2kT

(vxvyvz)

222

dvxdvydvz

m

4n

2kT

3e

m2kT

v

vdv

(5 points)

(v)v2

kTm

(3

)

D()d

2Vh

(2m)

3

d

(5 points)

154

(kT),22

32

(kT)

()



2

(kT)

(5 points)5.(20 points)Solution

The mean number of electron at one level ε is

when temperature T=0K: f=1ε<μ(0)

f=0ε>μ(0)(5 points)

4Vh

f

e



kT

1

(2m)

(0)

212

d N

(0)3

2m

NV

5.6eV

(5 points)

(0)p(0)2m

vF1.410m.s

p(0)3

NV

1

(5 points)

2.110

Pa

(5 points)

6.(20 points)Solution

(4 points)

3N

E

i1

pi

2m

1E

Z

N!h

3N

e

dq1dq3Ndp1dp3N

3N

ZV

N

2m2

N!h2

The free energy

lnZ(T, V, N)=-NkT(1lnV2mkT32F=--kT2

)Nh

pFV

NkTT,N

V

S

FV2mkT32T

Nk(ln5

V,N



Nh2

)2F

Nk(lnV2mkT325

 N 2

)V ,N Nh2

(4 points)

(4 points)(4 points)

热力学与统计物理学 篇7

统计物理学是从微观角度对热现象进行描述, 是关于热现象的微观理论。统计物理学从宏观物质系统是由大量微观粒子所组成的事实出发, 认为物质的宏观性质是大量微观粒子运动的集体表现, 即宏观物理量是微观量的统计平均值。所以, 要研究平衡状态首先就必须研究粒子的最概然分布。可见, 在统计物理学中, 配分函数的地位和作用是至关重要的。通过配分函数, 我们可以计算出热力学系统的内能、自由能、熵等重要物理量, 从而确定整个系统的状态和性质。我们知道理想气体中总的配分函数Z可以分成平动、振动、转动配分函数之积。本文主要是讨论氢转动配分函数的计算, 我们知道氢分子是同核双原子分子。在量子力学中, 根据微观粒子全同性原理可以证明:氢分子的转动状态与两个氢核的自旋状态有关。当两个氢核的自旋平行时, 转动量子数只能取奇数, 称为正氢状态。若两个氢核的自旋反平行时, 转动量子数只能取偶数, 称为仲氢状态。这两种状态相互转变的概率非常小。由转动配分函数的计算公式:

分别对正氢状态和仲氢状态进行计算就可得到氢分子的转动配分函数。

1 计算分析

根据条件代入上式, 我们有

其中Zr1o和Zr1p分别表示正氢和仲氢的转动配分函数。所以有

教材中认为:在通常的实验条件下, 正氢占四分之三, 仲氢占四分之一, 可以认为氢气是正氢和仲氢的非平衡混合物。则氢的转动配分函数可表示为

下面我们通过解析计算来讨论这个配分函数的关系式。

再令, 即L=2m, 上式可化为

同理对式 (3) Zr1p进行计算, 令L=l/2, 即l=2L, 代入上式得

求和化积分, 令:x=2L (2L+1) , dx= (8L+2) , 则

由式 (8) 及式 (10) 可知

2 结果与讨论

摘要:本文讨论汪志诚先生《热力学·统计物理》第三版教材中给出的氢分子转动配分函数, 通过解析计算得到氢分子转动配分函数的表达式, 代入计算内能和热容量, 结果表明与理论相符。

关键词:转动配分函数,正氢状态,仲氢状态

参考文献

[1]汪志诚.热力学·统计物理[M].3版.北京:高等教育出版社, 2004.

[2]马本, 高尚惠, 孙煜.热力学与统计物理[M].北京:高等教育出版社, 1980.

热力学与统计物理学 篇8

【关键词】物理学 工程力学

首先从广度上看,物理学涉及了力学、电学、热学、光学、原子物理学等,而工程力学只涉及了物理学的力学部分;物理学是一门为学习专业基础课(如《电工电子学》《工程力学》等)打基础的学科,而工程力学是为学习专业课(《矿山压力与控制》《井巷工程》等)打基础的学科。所以对于高职院校的学生来说,难度要求降低了,专业要求提高了。教师在授课时,要帮助学生克服畏难情绪(特别是对“文科”学生而言),明确告诉学生,在专业课的学习中也许用到工程力学中的一个“点”,但我们现在就要学好一个“面”。从而调动学生的学习积极性,激发学生的学习热情,为今后学习打下良好的学习基础。

第二,从宏观上看,工程力学与物理学有很多相通的地方,从微观上看又有很多不同的地方。例如,在静力学中,从物理学角度出发,为了研究问题的方便,在许多情况下可以将物体看成质点,只有在研究物体的转动问题时才将物体看成刚体,而在工程力学中却不能忽略物体的大小和形状,只能将物体看成刚体;在物理学中,即使将物体看成刚体也无需考虑物体的形变,而在工程力学中,我们必须考虑物体的承载能力(即强度、刚度、稳定性),从而必然要研究物体的形变,此时要将“刚体”假设成“变形固体”。

第三,学好物理学必须掌握一定的数学知识,尤其是在大学阶段,不具备《高等数学》手段,就不能解决物理问题;而学好工程力学除了掌握一定的数学知识外,还必须具备相关的其他专业课(如《工程制图》《机械制造》)的知识。这就不但要求学生要学好相关知识,同时要求教师也要掌握相关知识。

在物理教学中,要运用多种方法突出物理概念教学。物理概念的教学是提高教学质量的关键,也是极为重要的教学环节。 物理概念是物理学的基础,如果没有建立起清晰的物理概念,要想学好物理基础知识是不可能的。在讲授物理概念时,我认为应从以下几点入手:⑴运用实验、模型形成概念。物理学是一门以实验为基础的自然科学,物理学也应该以实验为基础。通过实验和演示,能使学生理解如在学习和物理规律性,培养学生学习物理的兴趣,使学生从感性认识上升到理性认识,培养思维能力和解决实际问题的能力。⑵ 运用类比的方法认清概念。在培养学生善于从现象中抽象概括出事物本质特征的同时,还要让学生学会新旧物理知识和公式进行类比的方法,抓住一类规律的相似属性,从类比中加深对概念和公式的理解。运用类比分析方法讲解物理概念,除了加深对概念的理解,同时也避免混淆,防止张冠李戴。⑶找出关键的“字”或“词”提炼概念。物理学中的概念、规律有些很平淡、简单,有些抽象、复杂。在基本概念的教学中,千万不要平铺直叙。要在讲解过程中,抓住关键的“字”或“词”进行剖析,强化学生对概念的认识、理解。⑷挖掘内涵、拓展外延、强化概念。物理概念是反映物理变化中特有属性的一种思维形式。所谓内涵(既实质)是该物体在物体变化中的特殊性属性,通常用“定义”表示。所谓外延就是概念的适用范围和条件,是某一物理概念反映的对象的总和,通常用“划分”表示。抓住内涵可以准确地理解概念的本质,它们是相辅相成的。⑸精选习题巩固概念。教学大纲指出:“做好练习是使学生牢固地掌握基础知识,灵活地解决实际问题的重要途径。”学以致用,是练习巩固概念、灵活地运用所学知识的良好途径。在突出概念教学的过程中,除了前述几种方法外,还要精选习题。其原则是:紧紧围绕概念;灵活运用概念。

在工程力学的教学中,除了借助物理教学的精华外,还要突出它的专业特点,注重专业术语的运用。在工程力学的教学中,我们主要注意以下几点:⑴工程力学中的有些概念源于物理学概念要精讲甚至不讲,有些概念专业性很强要详细地讲、反复地讲。例如,在讲授“主矢量”与“主矩”时,涉及了力的平移定理(工程力学方面),又涉及了力的投影定理(物理力学方面)。在运用好前面所学的知识的同时,又理解了“主矢量”与“主矩”的概念,为今后学习平面任意力系的平衡方程奠定了坚实的基础。⑵在工程力学中更注重它的实用性。例如,在求构件某一截面上的应力时,要求运算过程中面积的单位采用平方毫米(其国际单位是米),力的单位采用国际单位牛顿,这样应力的单位就是用实用单位兆帕(其国际单位是帕斯卡)。又如,在求梁弯曲时横截面上的剪力及弯矩时,如果按照平衡条件,剪力、弯矩的符号规定繁琐难记,而采用实用方法即“左上右下生正剪”“左顺右逆生正弯”就比较简单易记。⑶注重基础做好铺垫。工程力学中,静力学虽然不是重点内容,如果做好铺垫,材料力学就更加容易理解;在讲授内力概念时,虽然在求应力时涉及内力比较简单,但教师切记不要嫌麻烦,亦步亦趋、做好铺垫,使学生在应用内力求解其他问题时能一目了然地、非常熟练地求出内力的大小和方向。总而言之,工程力学的知识面相对物理学知识面“窄”了,但工程力学却要求专业性更“精”了。

热力学与统计物理学 篇9

1、托马斯·杨的双缝演示应用于电子干涉实验

在20世纪初的一段时间中,人们逐渐发现了微观客体(光子、电子、质子、中子等)既有波动性,又有粒子性,即所谓的“波粒二象性”。“波动”和“粒子”都是经典物理学中从宏观世界里获得的概念,与我们的直观经验较为相符。然而,微观客体的行为与人们的日常经验毕竟相差很远。如何按照现代量子物理学的观点去准确认识、理解微观世界本身的规律,电子双缝干涉实验为一典型实例。

杨氏的双缝干涉实验是经典的波动光学实验,玻尔和爱因斯坦试图以电子束代替光束来做双缝干涉实验,以此来讨论量子物理学中的基本原理。可是,由于技术的原因,当时它只是一个思想实验。直到1961年,约恩·孙制作出长为50mm、宽为0.3mm、缝间距为1mm的双缝,并把一束电子加速到50keV,然后让它们通过双缝。当电子撞击荧光屏时显示了可见的图样,并可用照相机记录图样结果。电子双缝干涉实验的图样与光的双缝干涉实验结果的类似性给人们留下了深刻的印象,这是电子具有波动性的一个实证。更有甚者,实验中即使电子是一个个地发射,仍有相同的干涉图样。但是,当我们试图决定电子究竟是通过哪个缝的,不论用何手段,图样都立即消失,这实际告诉我们,在观察粒子波动性的过程中,任何试图研究粒子的努力都将破坏波动的特性,我们无法同时观察两个方面。要设计出一种仪器,它既能判断电子通过哪个缝,又不干扰图样的出现是绝对做不到的。这是微观世界的规律,并非实验手段的不足。

2、伽利略的自由落体实验

伽利略(1564—1642)是近代自然科学的奠基者,是科学史上第一位现代意义上的科学家。他首先为自然科学创立了两个研究法则:观察实验和量化方法,创立了实验和数学相结合、真实实验和理想实验相结合的方法,从而创造了和以往不同的近代科学研究方法,使近代物理学从此走上了以实验精确观测为基础的道路。爱因斯坦高度评价道:“伽利略的发现以及他所应用的科学推理方法是人类思想史上最伟大的成就之一”。

16世纪以前,希腊最著名的思想家和哲学家亚里斯多德是第一个研究物理现象的科学巨人,他的《物理学》一书是世界上最早的物理学专著。但是亚里斯多德在研究物理学时并不依靠实验,而是从原始的直接经验出发,用哲学思辨代替科学实验。亚里斯多德认为每一个物体都有回到自然位置的特性,物体回到自然位置的运动就是自然运动。这种运动取决于物体的本性,不需要外部的作用。自由落体是典型的自然运动,物体越重,回到自然位置的倾向越大,因而在自由落体运动中,物体越重,下落越快;物体越轻,下落越慢。

伽利略当时在比萨大学任职,他大胆地向亚里斯多德的观点挑战。伽利略设想了一个理想实验:让一重物体和一轻物体束缚在一起同时下落。按照亚里斯多德的观点,这一理想实验将会得到两个结论。首先,由于这一联结,重物受到轻物的牵连与阻碍,下落速度将会减慢,下落时间将会延长;其次,也由于这一联结,联结体的重量之和大于原重物体;因而下落时间会更短。显然这是两个截然相反的结论。

伽利略利用理想实验和科学推理,巧妙地揭示了亚里斯多德运动理论的内在矛盾,打开了亚里斯多德运动理论的缺口,导致了物理学的真正诞生。

人们传说伽利略从比萨斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地,从而向世人展示了他尊重科学,不畏权威的可贵精神。

3、罗伯特·密立根的油滴试验

很早以前,科学家就在研究电。人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到。18,英国物理学家托马斯已经得知如何获取负电荷电流。19美国科学家罗伯特·密立根(1868—1953)开始测量电流的电荷。

他用一个香水瓶的喷头向一个透明的小盒子里喷油滴。小盒子的顶部和底部分别放有一个通正电的电极和一个通负电的电极。当小油滴通过空气时,就带了一些静电,它们下落的速度可以通过改变电极的电压来控制。当去掉电场时,测量油滴在重力作用下的速度可以得出油滴半径;加上电场后,可测出油滴在重力和电场力共同作用下的速度,并由此测出油滴得到或失去电荷后的速度变化。这样,他可以一次连续几个小时测量油滴的速度变化,即使工作因故被打断,被电场平衡住的油滴经过一个多小时也不会跑多远。

经过反复试验,密立根得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。他认为电子本身既不是一个假想的也不是不确定的,而是一个“我们这一代人第一次看到的事实”。他在诺贝尔奖获奖演讲中强调了他的工作的两条基本结论,即“电子电荷总是元电荷的确定的整数倍而不是分数倍”和“这一实验的观察者几乎可以认为是看到了电子”。

“科学是用理论和实验这两只脚前进的”,密立根在他的获奖演说中讲道,“有时这只脚先迈出一步,有时是另一只脚先迈出一步,但是前进要靠两只脚:先建立理论然后做实验,或者是先在实验中得出了新的关系,然后再迈出理论这只脚并推动实验前进,如此不断交替进行”。他用非常形象的比喻说明了理论和实验在科学发展中的作用。作为一名实验物理学家,他不但重视实验,也极为重视理论的指导作用。

4、牛顿的棱镜分解太阳光

对光学问题的研究是牛顿(1642—1727)工作的重要部分之一,亦是他最后未完成的课题。牛顿1665年毕业于剑桥大学的三一学院,当时大家都认为白光是一种纯的没有其他颜色的光;而有色光是一种不知何故发生变化的光(亚里斯多德的理论)。1665—1667年间,年轻的牛顿独自做了一系列实验来研究各种光现象。他把一块三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们将其称作光谱。在他的手里首次使三棱镜变成了光谱仪,真正揭示了颜色起源的本质。1672年2月,牛顿怀着揭露大自然奥秘的兴奋和喜悦,在第一篇正式的科学论文《白光的结构》中,阐述了他的颜色起源学说,“颜色不像一般所认为的那样是从自然物体的折射或反射中所导出的光的性能,而是一种原始的、天生的性质”。“通常的白光确实是每一种不同颜色的光线的混合,光谱的伸长是由于玻璃对这些不同的光线折射本领不同”。

牛顿《光学》著作于17问世,其中第一节专门描述了关于颜色起源的棱镜分光实验和讨论,肯定了白光由七种颜色组成。他还给这七种颜色进行了命名,直到现在,全世界的人都在使用牛顿命名的颜色。牛顿指出,“光带被染成这样的彩条:紫色、蓝色、青色、绿色、黄色、橙色、红色,还有所有的中间颜色,连续变化,顺序连接”。正是这些红、橙、黄、绿、青、蓝、紫基础色不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。

这一实验后人可以不断地重复进行,并得到与牛顿相同的实验结果。自此以后七种颜色的理论就被人们普遍接受了。通过这一实验,牛顿为光的色散理论奠定了基础,并使人们对颜色的解释摆脱了主观视觉印象,从而走上了与客观量度相联系的科学轨道。同时,这一实验开创了光谱学研究,不久,光谱分析就成为光学和物质结构研究的主要手段。

5、托马斯·杨的光干涉试验

牛顿在其《光学》的论著中认为光是由微粒组成的,而不是一种波。因此在其后的近百年间,人们对光学的认识几乎停滞不前,没有取得什么实质性的进展。18英国物理学家托马斯·杨(1773—1829)向这个观点提出了挑战,光学研究也获得了飞跃性的发展。

杨在“关于声和光的实验与研究提纲”的论文中指出,光的微粒说存在着两个缺点:一是既然发射出光微粒的力量是多种多样的,那么,为什么又认为所有发光体发出的光都具有同样的速度?二是透明物体表面产生部分反射时,为什么同一类光线有的被反射,有的却透过去了呢?杨认为,如果把光看成类似于声音那样的波动,上述两个缺点就会避免。

为了证明光是波动的,杨在论文中把“干涉”一词引入光学领域,提出光的“干涉原理”,即“同一光源的部分光线当从不同的渠道,恰好由同一个方向或者大致相同的方向进人眼睛时,光程差是固定长度的整数倍时最亮,相干涉的两个部分处于均衡状态时最暗,这个长度因颜色而异”。杨氏对此进行了实验,他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞。让光线透过,并用一面镜子反射透过的光线。然后他用一个厚约1/30英寸的纸片把这束光从中间分成两束,结果看到了相交的光线和阴影。这说明两束光线可以像波一样相互干涉。这就是著名的“杨氏干涉实验”。

杨氏实验是物理学史上一个非常著名的实验,杨氏以一种非常巧妙的方法获得了两束相干光,观察到了干涉条纹。他第一次以明确的形式提出了光波叠加的原理,并以光的波动性解释了干涉现象。随着光学的发展,人们至今仍能从中提取出很多重要概念和新的认识。无论是经典光学还是近代光学,杨氏实验的意义都是十分重大的。爱因斯坦(1879—1955)指出:光的波动说的成功,在牛顿物理学体系上打开了第一道缺口,揭开了现今所谓的场物理学的第一章。这个试验也为一个世纪后量子学说的创立起到了至关重要的作用。

6、卡文迪许扭矩实验

牛顿的万有引力理论指出:两个物体之间的吸引力与它们质量的乘积成正比,与它们距离的平方成反比。但是万有引力到底多大?

18世纪末,英国科学家亨利·卡文迪什(1731—1810)决定要找到一个计算方法。他把两头带有金属球的6英尺长的木棒用金属线悬吊起来。再用两个350磅重的皮球分别放在两个悬挂着的金属球足够近的地方,以吸引金属球转动,从而使金属线扭动,然后用自制的仪器测量出微小的转动。

测量结果惊人的准确,他测出了万有引力的引力常数G。牛顿万有引力常数G的精确测量不仅对物理学有重要意义,同时也对天体力学、天文观测学,以及地球物理学具有重要的实际意义。人们在卡文迪什实验的基础上可以准确地计算地球的密度和质量。

7、埃拉托色尼测量地球圆周

埃拉托色尼(约公元前276一约前194)公元前276年生于北非城市塞里尼(今利比亚的沙哈特)。他兴趣广泛,博学多才,是古代仅次于亚里斯多德的百科全书式的学者。只是因为他的著作全部失传,今天才对他不太了解。

埃拉托色尼的科学工作极为广泛,最为著名的成就是测定地球的大小,其方法完全是几何学的。假定地球是一个球体,那么同一个时间在地球上不同的地方,太阳线与地平面的夹角是不一样的。只要测出这个夹角的差以及两地之间的距离,地球周长就可以计算出来。他听说在埃及的塞恩即今天的阿斯旺,夏至这天中午的阳光悬在头顶,物体没有影子,光线可以直射到井底,表明这时的太阳正好垂直塞恩的地面,埃拉托色尼意识到这可以帮助他测量地球的圆周。他测出了塞恩到亚历山大城的距离,又测出夏至正中午时亚历山大城垂直杆的杆长和影长,发现太阳光线有稍稍偏离,与垂直方向大约成7°角。剩下的就是几何问题了。假设地球是球状,那么它的圆周应是360°。如果两座城市成7°角(7/360的圆周),就是当时5000个希腊运动场的距离,因此地球圆周应该是25万个希腊运动场,约合4万千米。今天我们知道埃拉托色尼的测量误差仅仅在5%以内,即与实际只差100多千米。

8、伽利略的加速度试验

伽利略利用理想实验和科学推理巧妙地否定了亚里斯多德的自由落体运动理论。那么正确的自由落体运动规律应是怎样的呢?由于当时测量条件的限制,伽利略无法用直接测量运动速度的方法来寻找自由落体的运动规律。因此他设想用斜面来“冲淡”重力,“放慢”运动,而且把速度的测量转化为对路程和时间的测量,并把自由落体运动看成为倾角为90°的斜面运动的特例。在这一思想的指导下,他做了一个6米多长,3米多宽的光滑直木板槽,再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滚下,然后测量铜球每次滚下的时间和距离的关系,并研究它们之间的数学关系。亚里斯多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离。他把实验过程和结果详细记载在1638年发表的著名的科学著作《关于两门新科学的对话》中。

伽利略在实验的基础上,经过数学的计算和推理,得出假设;然后再用实验加以检验,由此得出正确的自由落体运动规律。这种研究方法后来成了近代自然科学研究的基本程序和方法。

伽利略的斜面加速度实验还是把真实实验和理想实验相结合的典范。伽利略在斜面实验中发现,只要把摩擦减小到可以忽略的程度,小球从一斜面滚下之后,可以滚上另一斜面,而与斜面的倾角无关。也就是说,无论第二个斜面伸展多远,小球总能达到和出发点相同的高度。如果第二斜面水平放置,而且无限延长,则小球会一直运动下去。这实际上是我们现在所说的惯性运动。因此,力不再是亚里斯多德所说的维持运动的原因,而是改变运动状态(加速或减速)的原因。

把真实实验和理想实验相结合,把经验和理性(包括数学论证)相结合的方法,是伽利略对近代科学的重大贡献。实验不是也不可能是自然观象的完全再现,而是在人类理性指导下的对自然现象的一种简化和纯化,因而实验必须有理性的参与和指导。伽利略既重视实验,又重视理性思维,强调科学是用理性思维把自然过程加以纯化、简化,从而找出其数学关系。因此,是伽利略开创了近代自然科学中经验和理性相结合的传统。这一结合不仅对物理学,而且对整个近代自然科学都产生了深远的影响。正如爱因斯坦所说:“人的思维创造出一直在改变的宇宙图景,伽利略对科学的贡献就在于毁灭直觉的观点而用新的观点来代替它。这就是伽利略的发现的重要意义”。

9、卢瑟福散射与原子的有核模型

卢瑟福(1871—1937)在18发现了a射线。19卢瑟福在曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,即大量正电荷聚集的糊状物质,中间包含着电子微粒,但是他和他的助手发现向金箔发射带正电的a射线微粒时有少量被弹回,这使他们非常吃惊。通过计算证明,只有假设正电球集中了原子的绝大部分质量,并且它的直径比原子直径小得多时,才能正确解释这个不可想象的实验结果。为此卢瑟福提出了原子的有核模型:原子并不是一团糊状物质,大部分物质集中在一个中心的小核上,称之为核子,电子在它周围环绕。

这是一个开创新时代的实验,是一个导致原子物理和原子核物理肇始的具有里程碑性质的重要实验。同时他推演出一套可供实验验证的卢瑟福散射理论。以散射为手段研究物质结构的方法,对近代物理有相当重要的影响。一旦我们在散射实验中观察到卢瑟福散射的特征,即所谓“卢瑟福影子”,则可预料到在研究的对象中可能存在着“点”状的亚结构。此外,卢瑟福散射也为材料分析提供了一种有力的手段。根据被靶物质大角散射回来的粒子能谱,可以研究物质材料表面的性质(如有无杂质及杂质的种类和分布等),按此原理制成的“卢瑟福质谱仪”已得到广泛应用。

10、米歇尔·傅科钟摆试验

1851年,法国著名物理学家傅科(1819—1868)为验证地球自转,当众做了一个实验,用一根长达67m的钢丝吊着一个重28kg的摆锤《摆锤直径0.30m),摆锤的头上带有钢笔,可观测记录它的摆动轨迹。傅科的演示说明地球是在围绕地轴旋转。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期;在南半球,钟摆应是逆时针转动;而在赤道上将不会转动;在南极,转动周期是24小时。

这一实验装置被后人称为傅科摆,也是人类第一次用来验证地球自转的实验装置。该装置可以显示由于地球自转而产生科里奥利力的作用效应,也就是傅科摆振动平面绕铅垂线发生偏转的现象,即傅科效应。实际上这等同于观察者观察到地球在摆下的自转。

初中力学经典实验

力学部分

实验一:天平测量

【实验器材】天平(托盘天平)。

【实验步骤】

1.把天平放在水平桌面上,取下两端的橡皮垫圈。

2.游码移到标尺最左端零刻度处(游码归零,游码的最左端与零刻度线对齐)。

3.调节两端的平衡螺母(若左盘较高,平衡螺母向左拧;右盘同理),直至指针指在刻度盘中央,天平水平平衡。

4.左物右码,直至天平重新水平平衡。(加减砝码或移动游码)

5.读数时,被测物体质量=砝码质量+游码示数(m 物=m 砝+m 游)

【实验记录】此物体质量如图:62 g

实验二:弹簧测力计测力

【实验器材】细线、弹簧测力计、钩码、木块

【实验步骤】

测量前:

1.完成弹簧测力计的调零。(沿测量方向水平调零)

2.记录该弹簧测力计的测量范围是 0~5 N,最小分度值是 0.2 N。

测量时:拉力方向沿着弹簧伸长方向。

【实验结论】如图所示,弹簧测力计的示数 F=1.8 N。

实验三:验证阿基米德原理

【实验器材】弹簧测力计、金属块、量筒、水

【实验步骤】

1.把金属块挂在弹簧测力计下端,记下测力计的示数F1。

2.在量筒中倒入适量的水,记下液面示数 V1。

3.把金属块浸没在水中,记下测力计的示数 F2 和此时液面的示数 V2。

4.根据测力计的两次示数差计算出物体所受的浮力(F 浮=F1-F2)。

5.计算出物体排开液体的体积(V2-V1),再通过 G水=ρ(V2-V1)g 计算出物体排开液体的重力。

6.比较浸在液体中的物体受到浮力大小与物体排开液体重力之间的关系。(物体所受浮力等于物体排开液体所受重力)

【实验结论】

液体受到的浮力大小等于物体排开液体所受重力的大小

实验四:测定物质的密度

(1)测定固体的密度

【实验器材】天平、量筒、水、烧杯、细线、石块等。

【实验步骤】

1.用天平测量出石块的质量为 48.0 g。

2.在量筒中倒入适量的水,测得水的体积为 20 ml。

3.将石块浸没在量筒内的水中,测得石块的体积为cm 3 。

【实验结论】

根据公式计算出石块的密度为 2400 kg/m 3 。

多次实验目的:多次测量取平均值,减小误差

(2)测定液体的密度

【实验步骤】

1.测出容器与液体的总质量(m总)。

2.将一部分液体倒入量筒中,读出体积 V。

3.测容器质量(m容)与剩余液体质量(m剩=m总-m容) 。

4.算出密度:ρ

实验五:物质质量&体积与那些因素有关

【实验器材】量筒、天平、水、体积不等的若干铜块和铁块。

【实验步骤】

1.用天平测出不同铜块和铁块的质量,用量筒测出不同铜块和铁块的体积。

2.要记录的物理量有质量,体积。

3.设计表格:

【实验结论】

1.同种物质,质量与体积成正比。

2.同种物质,质量和体积的比值相同。

3.不同物质,质量和体积的比值不同。

4.体积相同的不同物质,质量不同。

实验六:探究二力平衡的条件

【实验器材】弹簧测力计、一张硬纸板、细绳、剪刀等。

【实验步骤】

探究当物体处于静止时,两个力的关系;探究当物体处于匀速直线运动状态时,两个力的关系。

1.如图 a 所示,作用在同一物体上的两个力,在大小相等、方向相反的情况下,它们还必须在同一直线,这二力才能平衡。

2.如图 b、c 所示,两个力在大小相等、方向相反且在同一直线上的情况下,它们还必须在同一物体上,这二力才能平衡。

【实验结论】

二力平衡的条件: 1.大小相等(等大)2.方向相反(反向)3.同一直线(共线)4.同一物体(同体)

实验七:探究液体内部压强与哪些因素有关

【实验器材】U 形管压强计、大量筒、水、盐水等。

【实验步骤】

1.将金属盒放入水中一定深度,观察 U 形管液面高度差变大,这说明同种液体,深度越深,液体内部压强越大。

2.保持金属盒在水中的深度,改变金属盒的方向,观察 U 形管液面的高度差相同,这现象说明:同种液体,深度相同,液体内部向各个方向的压强都相等。

3.保持金属盒的深度不变,把水换成盐水,观察 U 形管液面高度差变化,可以探究液体内部的压强与液体密度(液体种类)的关系。

同一深度,液体密度越大,液体内部压强越大。

【注意】

在调节金属盒的朝向和深度时,眼睛要注意观察 U 形管压强计两边液面的高度差的变化情况。

在研究液体内部压强与液体密度的关系时,要保持金属盒在不同液体中的深度相同。

实验八:探究杠杆平衡的条件

【实验器材】带刻度的均匀杠杆、铁架台、弹簧测力计、钩码和细线等。

【实验步骤】

1.把杠杆的中点支在铁架台上,调节杠杆两端的平衡螺母,使杠杆在水平位置平衡,这样做的目的是方便直接在杠杆上读出力臂值。(研究时必须让杠杆在水平位置平衡后,才能记录实验数据)

2.将钩码分别挂在杠杆的两侧,改变钩码的位置或个数使杠杆在水平位置保持平衡。

3.所需记录的数据是动力、动力臂、阻力、阻力臂。

4.把钩码挂在杠杆上,在支点的同侧用测力计竖直向上拉杠杆,重复实验记录数据,需多次改变杠杆所受作用力大小,方向和作用点。(多次实验,得出普遍物理规律)

【实验结论】

杠杆的平衡条件是:当杠杆平衡时,动力×动力臂=阻力×阻力臂,若动力和阻力在支点的异侧,则这两个力的方向相同;若动力和阻力在支点的同侧,则这两个力的方向相反。

上一篇:11春德育计划下一篇:风娃娃教案