电机控制

2024-04-18

电机控制(共8篇)

电机控制 篇1

控制电机报告

控制电机

交流伺服电机的探究

电气信息工程学院电气系

专业班级

电气

学生姓名

学生学号

指导教师

2015年

X月

X日

目 录

一、引言

二、交流伺服电动机的结构特点

三、伺服电动机的工作原理

21、交流伺服电机

22、永磁交流伺服电机的控制过程

43、永磁交流伺服电动机同直流伺服电动机比较

四、交流伺服电机的应用

61、交流伺服驱动系统

62、交流伺服控制策略

73、电机模型

五、结束语

六、参考文献

一、引言

用作自动控制装置中执行元件的微特电机。又称执行电动机。其功能是将电信号转换成转轴的角位移或角速度。伺服:一词源于希腊语“奴隶”的意思。人们想把“伺服机构”当个得心应手的驯服工具,服从控制信号的要求而动作。在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。由于它的“伺服”性能,因此而得名。

交流伺服电动机结构简单,无炭刷,效率高,响应快,速比大,不需要经常维护,非常引人注目,在许多领域有取代直流伺服电动机之势。

交流伺服电动机控制系统包括;

控制交流伺服电动机转速和输出转矩的逆变器,控制逆变器与变换器之间接点处直流电压的变换器和一个控制器。

当转速低于额定转速时,该直流电压被控制为恒定电压:

而当转速超过额定转速时,该直流电压被控制成与转速成比例的一个增加电压,以便使伺服电动机的输出转矩保持一个恒定转矩。

永磁交流伺服电动机的定子三相绕组由SPWM正弦脉宽调制电源供电,故又称正弦波驱动无刷电动机。其特点是:

伺服性能好,可采用数字控制,运行平稳、转矩波动小、过载能力强;

无普通直流伺服电动机电刷换向器磨损问题,维护简单、寿命长、工作可靠;

能适应高速大力矩驱动要求;

绕组安装在定子上,散热好;

轴上位置传感器多用光电编码器、无接触式旋转变压器等。

二、交流伺服电动机的结构特点

作为交流伺服电动机使用的有异步型和同步型两种,异步型交流伺服电动机定子放置线圈,转子为鼠笼型,大量用作机床和通用工业机器的驱动元件;

同步型交流伺服电动机定子放置线圈,转子为永久磁钢,根据磁极位置从电机外部进行换向,也可称为无刷直流电动机。永久磁钢的交流伺服电动机按其励磁方式和供电方式的不同又可分为两类:一类电机的永久磁铁励磁磁场为正弦波,定子绕组感应出来的反电动势为正弦波,逆变器提供正弦波电流;

另一类电机的永久磁铁励磁磁场为方波,定子绕组感应出来的反电动势为梯形波,逆变器提供方波电流。

三、伺服电动机的工作原理

1、交流伺服电机

(1)交流伺服电机的工作原理交流伺服电机内部的转子是永磁铁,驱动器控制的U

/

V

/

W

三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。

交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。

当电机原来处于静止状态时,如控制绕组不加控制电压,此时只有励磁绕组通电产生脉动磁场。可以把脉动磁场看成两个圆形旋转磁场。这两个圆形旋转磁场以同样的大小和转速,向相反方向旋转,所建立的正、反转旋转磁场分别切割笼型绕组(或杯形壁)并感应出大小相同,相位相反的电动势和电流(或涡流),这些电流分别与各自的磁场作用产生的力矩也大小相等、方向相反,合成力矩为零,伺服电机转子转不起来。一旦控制系统有偏差信号,控制绕组就要接受与之相对应的控制电压。在一般情况下,电机内部产生的磁场是椭圆形旋转磁场。一个椭圆形旋转磁场可以看成是由两个圆形旋转磁场合成起来的。这两个圆形旋转磁场幅值不等(与原椭圆旋转磁场转向相同的正转磁场大,与原转向相反的反转磁场小),但以相同的速度,向相反的方向旋转。它们切割转子绕组感应的电势和电流以及产生的电磁力矩也方向相反、大小不等(正转者大,反转者小)合成力矩不为零,所以伺服电机就朝着正转磁场的方向转动起来,随着信号的增强,磁场接近圆形,此时正转磁场及其力矩增大,反转磁场及其力矩减小,合成力矩变大,如负载力矩不变,转子的速度就增加。如果改变控制电压的相位,即移相1

0

°,旋转磁场的转向相反,因而产生的合成力矩方向也相反,伺服电机将反转。若控制信号消失,只有励磁绕组通入电流,伺服电机产生的磁场将是脉动磁场,转子很快地停下来。

为使交流伺服电机具有控制信号消失,立即停止转动的功能,把它的转子电阻做得特别大,使它的临界转差率S

k

大于1

。在电机运行过程中,如果控制信号降为“零”,励磁电流仍然存在,气隙中产生一个脉动磁场,此脉动磁场可视为正向旋转磁场和反向旋转磁场的合成。一旦控制信号消失,气隙磁场转化为脉动磁场,它可视为正向旋转磁场和反向旋转磁场的合成,电机即按合成特性曲线运行。由于转子的惯性,运行点由A

点移到B

点,此时电动机产生了一个与转子原来转动方向相反的制动力矩。负载力矩和制动力矩的作用下使转子迅速停止。

必须指出,普通的两相和三相异步电动机正常情况下都是在对称状态下工作,不对称运行属于故障状态。而交流伺服电机则可以靠不同程度的不对称运行来达到控制目的。这是交流伺服电机在运行上与普通异步电动机的根本区别。

(2)交流伺服电机使用时应注意

伺服电机驱动器接收电机编码器的反馈信号,并和指令脉冲进行比较,从而构成了一个位置的半闭环控制。所以伺服电机不会出现丢步现象,每一个指令脉冲都可以得到可靠响应。

调节伺服电机有几种方式,使用T

w

i

nLine

软件对电机的PID

参数、电机参数、电子齿轮比等进行调节。

对伺服电机进行机械安装时,应特别注意,由于每台伺服电机后端部都安装有旋转编码器,它是一个十分易碎的精密光学器件,过大的冲击力肯定会使其损坏。

(3)交流伺服电机的控制

为了使控制系统改变不大,应选用数字式伺服系统,可采用原来的脉冲控制方式;由于伺服电机都有一定过载能力,所以在选择伺服电机时,经验上可以按照所使用的步进电机输出扭矩的1

/

来参考确定伺服电机的额定扭矩;伺服电机的额定转速比步进电机的转速要高的多,为了充分发挥伺服电机的性能,最好增加减速装置,让伺服电机工作在接近额定转速下,这样也可以选择功率更小的电机,以降低成本。

用脉冲方式控制伺服电机,一是可靠性高,不易发生飞车事故。用模拟电压方式控制伺服电机时,如果出现接线接错或使用中元件损坏等问题时,有可能使控制电压升至正的最大值。这种情况是很危险的。如果用脉冲作为控制信号就不会出现这种问题。二是信号抗干扰性能好。数字电路抗干扰性能是模拟电路难以比拟的。

当然目前由于伺服驱动器和运动控制器的限制,用脉冲方式控制伺服电机也有一些性能方面的弱点。一是伺服驱动器的脉冲工作方式脱离不了位置工作方式,二是运动控制器和驱动器如何用足够高的脉冲信号传递信息。这两个根本的弱点使脉冲控制伺服电机有很大限制。一是控制的灵活性大大下降;二是控制的快速性速度不高。

伺服驱动器工作在位置方式下,位置环在伺服驱动器内部。这样系统的P

I

D

参数修改起来很不方便。当用户要求比较高的控制性能时实现起来会很困难。从控制的角度来看,这只是一种很低级的控制策略。如果控制程序不利用编码器反馈信号,事实上成了一种开环控制。如果利用反馈控制,整个系统存在两个位置环,控制器很难设计。在实际中,常常不用反馈控制,但不定时的读取反馈进行参考。这样的一个开环系统,如果运动控制器和伺服驱动器之间的信号通道上产生干扰,系统是不能克服的。

2、永磁交流伺服电机的控制过程

永磁交流伺服电动机可利用坐标变换进行矢量控制,这就使得永磁交流伺服电动机的控制变得同直流伺服电动机一样方便。其控制过程如下:

(1)

给定控制,将给定信号分解成两个互相垂直的直流信号、;

(2)

直/交变换,将、变换成两相信号、;

(3)

/3

变换,得到三相交流控制信号、、去控制逆变器;

(4)

电流反馈反映负载情况,使直流信号中的转矩分量iT能随负载而变,从而模拟直流电动机工作情况;

(5)

速度反馈反映给定与实际转速差,并进行矫正;

(6)

闭环控制信号由轴上所带编码器反馈,整个过程由数字信号处理器(DSP)

进行全数字化处理。

永磁交流伺服电动机的另一种控制模式是直接转矩控制。具体方法是:

在定子坐标系下分析电动机数学模型,在近似圆形旋转磁场的条件下,对电动机转矩直接进行控制,不用坐标变换。

3、永磁交流伺服电动机同直流伺服电动机比较

0

世纪8

0

年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。9

0

年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。

交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

永磁交流伺服电动机同直流伺服电动机比较,主要优点有:

(1)无电刷和换向器,因此工作可靠,对维护和保养要求低。

(2)定子绕组散热比较方便。

(3)惯量小,易于提高系统的快速性。

(4)适应于高速大力矩工作状态。

(5)同功率下有较小的体积和重量。

到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。交流伺服电机传动技术却能以较低的成本获取极高的位置控制精度,世界上许多知名电机制造商如松下,三洋,西门子等公司纷纷推出自己的交流伺服电机和伺服驱动器。日本松下公司的MINASA系列为比较典型的一种。

四、交流伺服电机的应用

1、交流伺服驱动系统

交流伺服驱动系统的发展与伺服电动机的不同发展阶段密切相关,从直流电机的发明到现在已经有一百多年的历史。直流电机虽然最早发明,但是由于当时铁磁材料以及晶闸管技术的限制,发展很是缓慢,一直到

1960

年以后随着可控硅的发明以及各种电机材料的改良,直流电动机才得到迅速发展,并在七十年代成为各种伺服系统中最重要的驱动设备。在直流电机快速发展以前的一段时期内步进电机应用最为广泛,受当时苏联以及日本等方面因素的影响,磁阻式步进电机快速发展并应用到数控机床设备中,在此时期由于生产要求低、技术落后,伺服控制系统多为开环控制。从

世纪

年代到现在,由于直流伺服电机同功率情况下自身体积较大及换向电刷问题的存在,在很多场合不能满足环境要求。随着电动机生产技术及其永磁体制造材料、现代控制理论、电机控制原理的突飞猛进,出现了方波、正弦波驱动的各种新型永磁同步电动机,逐渐开始替代直流伺服电动机市场。根据对控制系统高性能的要求,现如今的大部分交流伺服系统采用闭环控制方式。

现代交流伺服驱动系统,已经逐渐向数字时代转变,数字控制技术已经无孔不入,如信号处理技术中的数字滤波、数字控制器、各种先进智能控制技术的应用等,把功能更加强大的控制器芯片以及各种智能处理模块应用到工业机器人交流伺服驱动系统当中,可以实现更好的控制性能。分析多年来交流伺服控制系统的发展特色,总结市场上客户对其性能的要求,可以概括出交流伺服控制系统有以下几种热门发展方向:

(1)数字化

随着微电子技术的发展,处理速度更迅速、功能更强大的微控制器不断涌现,控制器芯片价格越来越低,硬件电路设计也更加简单,系统硬件设计成本快速下降,且数字电路抗干扰能力强,参数变化对系统影响小,稳定性好;采用微处理器的数字控制系统,更容易与上位机通讯,在不变更硬件系统结构的前提下,可随时改变控制器功能。在相同的硬件控制系统中,可以有多种形式的控制功能,不同的系统功能可以通过设计不同的软件程序来实现,且可以根据控制技术的发展把最新的控制算法通过软件编程实时的更新控制系统。

(2)智能化

为了适应更为恶劣的控制环境和复杂的控制任务,各种先进的智能控制算法已经开始应用在交流伺服驱动系统中。其特点是根据环境、负载特性的变化自主的改变参数,减少操作人员的工作量。目前市场上已经出现比较成熟的专用智能控制芯片,其控制动静态特性优越,在交流伺服驱动控制系统中被广大技术人员所采用。

(3)通用化

当前,伺服控制系统一般都配置有多种控制功能参数,这有利于操作人员在不改变系统硬件电路设计的前提下方便地设置成恒压频比控制、矢量控制、直接转矩控制等多种工作模式,应用领域十分广泛,另外可以控制异步、同步等不同类型的电动机,适应于各种闭环或开环控制系统,交流伺服控制系统的通用化将会在以后的伺服驱动系统发展的道路中越走越远。

2、交流伺服控制策略

最近几十年来,借助于电机控制理论及智能控制理论的不断完善,交流伺服控制理论也随之蓬勃发展起来;由于微电子技术的进步,各种方便用户开发的微控制器与数字信号处理器件大量涌现市场,为各种先进的智能控制算法在控制系统中的应用提供了可能。现如今,各种新型的伺服控制策略大量涌现,大有与传统控制策略一较高低的趋势,下面对几种常用的伺服控制策略进行分析比较:

(1)恒压频比控制

在工厂控制领域中使用最为广泛的仍然是恒压频比控制方式,此方法是通过控制输出电压与频率的比是常数,确保电动机的磁通量为定值,从而控制电动机的速度。这种控制方法在低速运行时转矩能力较弱,必须对定子电压压降进行补偿处理,另外因为此控制方法不能直接控制电磁转矩,因此性能较低。但由于恒压频比控制具有实现简单、运行稳定、调速方便等优点,因此在一些对动态性能要求比较低的场合应用比较广泛。

(2)矢量控制

上个世纪,矢量控制技术的提出,为交流伺服驱动系统的快速进步提供了理论支持。矢量控制技术的主要原理为:以转子旋转磁场作为参考系,将电动机定子矢量电流经过两次坐标变换分解为直轴电流和交轴电流分量,且使两电流分量相互正交,同时对交直轴电流分量的幅值和相位进行控制,可以获得像直流电机一样优越、甚至比直流电动机更好的动态控制性能,另外,矢量控制经过半个世纪的发展已经十分成熟,在伺服驱动系统中应用最为广泛;矢量控制技术的优点主要是原理简单,动态控制性能良好,缺点是在控制实现过程中要进行各种坐标变换,计算量比较大,另外此种控制方法会实时受到电动机定子电阻、电感以及转动惯量变化的影响,基本上不可能实现完全解耦,从而影响系统的动态性能,使控制效果变差。解决方法是加入各种先进的控制算法,对控制器进行智能化改进,从而提高伺服驱动系统的动态性能与鲁棒性。

(3)直接转矩控制

二十世纪八十年代中期,德国专家提出“直接自控制”的高性能交流电动机控制策略,此种控制策略不需要像矢量控制那样对电动机定子矢量电流进行大量而复杂的解耦变换,再通过控制解耦获得的交轴电流分量来间接的控制电动机电磁转矩,它采用定子磁场定向的控制方式,对交流电机的电磁转矩进行直接控制。此方式只受到电动机定子绕组阻值的影响,对电动机除定子绕组阻值之外的其他参数的变动稳定性好,解决了矢量控制受电动机本体参数影响大的缺点。1995

年,ABB

公司首先把直接转矩控制技术应用到了变频器当中,并作为一种高端产品出现在市场中,对矢量变频器提出了挑战。20

世纪末,开始有部分专家学者通过深入研究把直接转矩控制理论引入到交流同步电动机当中,完成了直接转矩控制技术在交流同步电动机伺服驱动领域的重大突破。直接转矩控制的优点是转矩动态响应快,缺点是在转速较低时转矩脉动较大。

(4)智能控制

智能控制理论是最近几十年来的一种新兴学科,它的迅速发展为交流永磁伺服控制技术的进步注入了新鲜血液。智能控制技术由于其自身的理论特点,在非线性控制领域中比经典控制理论更具有优势,在很多场合将会实现比经典控制理论更好的控制特性。

3、电机模型

如图

2-2

所示,给出了

PMSM的简单模型。其中,A、B、C分别为

PMSM三相定子绕组,它们把整个空间均分为三份。在此,根据永磁同步电动机的简单模型以及其坐标变换关系图,获得电的机的理想数学模型,不过要想获得精确理想的电机数学模型是很难实现的,因此在建立数学模型之前,我们首先要对电动机数学模型影响很小的量进行相应的忽略及假设:

(1)忽略磁路铁芯的磁饱和现象;

(2)忽略铁芯磁滞与涡流损耗;

(3)忽略转子上的阻尼绕组;

(4)不计温度影响;

(5)假设气隙磁场呈理想正弦分布。

图1

PMSM

结构简化模型

PMSM

三相定子绕组中通入三相交流电时,根据电磁感应定律和基尔霍夫定律可得

PMSM的定子电压、定子磁链和转子耦合磁链的方程分别如式所示:

式中、、——定子绕组相电压;、、——定子绕组相电流;、、——定子绕组总磁链;、、——各绕组耦合磁链;

——定子绕组电阻;

——定子绕组电感;

——转子磁链幅值。

电磁转矩是电动机对外输出能量的重要依据,交流伺服驱动控制系统是否能快速稳定的输出给定的电磁转矩是评价电动机动态响应性能的重要指标,PMSM的电磁转矩方程表述如式所示:

将磁链方程代入上式中可得方程如下式所示:

在隐极式永磁同步电动机中,=,代入上式中可以得到方程如下式所示:

由上式可以看出,通过对定子电流的控制,就可以控制

PMSM的转矩。作用到电机轴上的电磁转矩与电动机转速、负载转矩以及电动机转动惯量之间的变化关系可以用下面的电机运动方程式来表示:

五、结束语

(1)交流伺服电动机作为数控机床的新型执行元件在国外已取得了很大的进展,在我国提供性能好和可靠性高的交流伺服电动机,满足数控系统发展的需要,是当前的一个关键问题。

(2)从国外交流伺服电动机的发展趋势来看,应优先发展成本较低的同步型转速可控的直流无刷电动机。

(3)交流伺服电动机的性能在很大程度上取决于电子控制技术的水平。应力求采用数字控制和计算机控制,以克服交流伺服电动机的不足之处。

(4)随着交流伺服系统应用领域的不断扩大,交流伺服电动机将会有很大的发展。在我国,交流伺服电动机潜力的发掘和发展,尚需我们做大量的工作。

六、参考文献

[1]

唐玉增.从第七届欧洲国际机床展览会看机床电器产品的发展(下).机床电器,1955

(3)

[2]

徐殿国,王宗培.币明巨驱动系统发展概况.微电机,1990(3)

[3]

周泽存.高电压技术[M].3

版.北京:中国电力出版社,2007.

[4]谭建成.永磁交流伺服技术及其进展(1).微电机,1990(3)

[5]邵晓强.永磁交流伺服电动机力矩分析.微电机,1991

电机控制 篇2

关键词:永磁同步电机,同步控制,单神经元,PID,偏差耦合

永磁同步电机( PMSM) 由于转子结构采用永磁体替代了异步电机励磁绕组的机构,降低了转子的发热问题,并且由于永磁同步电机体积小、功率因数高、密度高及低速转矩大等优势逐渐被应用在需要高速运行、负载变化大和短时工作制的领域,同时使得在PMSM上采用全封闭结构和直驱控制方式成为了可能。但是由于永磁同步电机自身结构对同步性的要求,每台电机需单独配备一套牵引变流器,并且与异步电机存在转速、转差不同,PMSM对转速同步性要求较高,电机之间转速差过大会使擦轮严重,如果控制不当,会降低传动系统的性能[1~3]。因此,笔者针对以上问题提出一种多电机同步控制策略。

1永磁同步电机简介1

多电机同步控制是指系统中的电机按照相同转速运行,并且转速变化是同步的[4,5]。目前多电机同步控制策略主要有并行控制方式、主从控制方式、虚拟总轴控制方式、交叉耦合控制方式及偏差耦合控制方式[6]等。

PMSM的物理结构如图1所示。

建立数学模型之前,先做如下假设:

a. 忽略铁心饱和,不计涡流和磁滞损耗;

b. 永磁材料的电导率为零;

c. 转子上没有阻尼绕组。

相绕组中感应电动势的波形为正弦波。那么基于dq轴旋转坐标系下的PMSM的数学模型为:

式中id、iq———d、q轴初级电流;

J ———转动惯量;

Ld、Lq———d、q轴初级电感;

p ———电机极对数;

Rs———初级等效电阻;

Te、TL、T0———电磁转矩、负载转矩和空载转矩;

ud、uq———d、q轴初级电压;

ψd、ψq———d、q轴初级磁链;

ψf———永磁体有效磁链;

Ωr———转子机械角速度。

2基于单神经元偏差耦合多电机控制

2.1单神经元PID控制器设计

单神经元PID控制器( 图2) 具有自学习和自适应能力,其结构简单、环境适应能力强,并且具有较强的鲁棒性,是对传统PID控制的一种改进和优化[7],可根据被控对象参数变化进行自适应调节,在一定程度上解决了控制对象复杂和参数慢时变对系统控制上的不足。

图2中,xi( k) ( i = 1,2,3) 为神经元的3个输入量,反映的是期望输出和系统给定的偏差状态。 在此,将系统给定设为y*( k) ,实际输出为y( k) , 两者的偏差为e( k) ,x1( k) 、x2( k) 、x3( k) 是偏差e( k) 经过状态变换器,变换成神经元学习进行控制所需要的状态,性能指标为:

神经元PID的输出信号u( k) 为:

由式( 5) 可知,xi( k) ( i = 1,2,3) 分别对应常规PID的P项、I项、D项,改变式( 6) 中的 ωi( i = 1,2,3) 就相当于改变P、I、D这3个系数,从而形成具有自学习和自调整能力的神经元PID控制器,他们对应的权 值分别为 ω1( k) 、ω2( k) 和 ω3( k) 。笔者采用有监督Hebb学习算法,其神经元的学习过程为:

式中c ———常数,这里取c = 0;

ri( k) ———递进信号;

z( k) ———误差信号,z( k) = e( k) ;

η———神经元学习速率,η > 0。

因此可得:

其中K为神经元比例系数,K > 0; ηP、ηI、ηD分别为比例、积分、微分学习速率。综合考虑多种运行状况将 ηP、ηI、ηD和K分别设定为0. 5、0. 3、 0和0. 2,加权系数 ω1( 0) 、ω2( 0) 、ω3( 0) 分别设定为0. 3、0. 3、0. 3。

由于单神经元学习算法不能直接用传递函数加以描述,因此笔者采用S函数编写模型。单神经元PID控制器仿真模型如图3所示。

2.2偏差耦合控制器设计

电机同步控制方式中的并行控制方式是将各电机进行并联,每个电机接收的指令来自同一指令单元,这种控制方式适用于结构简单的系统,即系统采用同型号的电机,能保持各电机转速同步, 但缺点是相对整个系统该控制方式没有检测各电机间的转速差值,因此抗扰动能力弱[8]。

主从控制方式是设定一个主电机,其余电机转速跟随主电机转速进行变化,而主电机不跟随从电机进行变化,因此这种控制方式适用于电机有明显主从关系的系统。

交叉耦合控制方式是在并行控制方式的基础上增加了电机转速的检测和反馈。电机之间的转速跟随其他电机转速的变化而变化,但是这种方式经过验证仅适用于两台电机同步控制的场合。

偏差耦合控制方式是在交叉耦合控制方式的基础上进行了改进,将各个电机转速反馈值经MUX和DEMUX环节进行整合后,通过转速补偿对电机转速进行调节( 图4) 。笔者利用单神经元PID控制器替代传统转速补偿,使其更有效地解决被控对象之间的转速跟随、过程跟随及动态性能匹配等非线性问题,更好地实现了多电机间的同步控制。

笔者采用3台永磁同步电机进行同步控制研究,同步控制方式采用偏差耦合控制方法,并用单神经元PID控制器代替传统转速补偿模块。系统仿真模型为: 采集各个电机转速,经单神经元PID控制器,将调节后的转速误差信号与给定转速进行负反馈后送入PMSM调速系统。

3系统仿真实验

笔者利用Matlab7建立了永磁同步电机双闭环控制系统模型( 图5) ,采用有监督Hebb学习算法的单神经元PID控制器,并将其引入到传统偏差耦合多电机同步控制中,替代了转速补偿模块。

PMSM额定参数为: 额定电压UN= 300V,额定频率fN= 100Hz,定子电阻Rs= 0. 9585Ω,电感Ld= Lq= 5. 25m H,转子永磁 体磁通 ψf= 0. 1827Wb,电机极对 数p = 4,摩擦因子F = 0. 0003035N·m·s。3台电机转动惯量分别为: 0. 6329、0. 6429、0. 6529g · m2。仿真实验从以下两个方面来验证笔者提出方法的合理性。

转速突变。负载转矩TL= 2N·m,初始给定转速n1*= 300r / min,当t = 0. 1s时,转速变为n2*= 1000r / min,当t = 0. 3s时,转速降低 为n3*= 100r / min。根据实验结果分析当给定转速变化时,各个电机转速的响应性、跟随性和波动性。实验波形如图6所示。

3台电机在t = 0. 1s时的同步转速误差曲线如图7所示。

通过图6、7可以看出,由于采用具有监督Hebb学习方法的单神经元PID控制器替代传统转速补偿模块,使得基于改进的偏差耦合多电机同步控制系统具有很强的自调节能力,当转速突变时,系统超调小、鲁棒性强、电机间转速很快达到同步。

突加负载扰动。电机以n*= 1000r / min空载启动,当t = 0. 1s时,各电机突 加负载TL= 3N·m; 当t = 0. 3s时,各电机的负载减少为TL= 1N·m。仿真实验转速波形和局部放大波形如图8所示。

从图8可以看出,当电机给定转速空载启动时,各个电机转速基本无超调,跟随性好。当t为0. 1、0. 3s突然加减负载扰动时,电机间调节时间短、鲁棒性好,很快进入同步状态。

4结论

4.1由于采用有监督Hebb学习算法的单神经元PID控制器,学习速率ηP、ηI、ηD取值裕度比较大,而根据公式可知增益K取值非常重要,取值偏大会增大系统超调,偏小会增加系统响应时间。

4. 2建立了PMSM单神经元PID的偏差耦合控制数学模型,利用Matlab7搭建了系统仿真模型, 对转速突变和突加、减负载两个方面进行仿真实验分析,通过实验结果说明有监督Hebb学习算法的单神经元PID运用到偏差耦合多电机同步控制系统中,使系统具有良好的自适应能力,能够有效地减小超调甚至无超调,提高系统响应能力,增加系统的鲁棒性,充分验证了笔者提出基于单神经元PID的偏差耦合多电机同步控制方法的合理性。

参考文献

[1]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.

[2]张世韬,杨风,郝骞.单神经元PID控制器研究及仿真[J].机械工程及自动化,2009,(3):69~70.

[3]侯勇严,郭文强.单神经元自适应PID控制器设计方法研究[J].微计算机信息,2005,(12):8~9,17.

[4]Perez-Pinal F J,Caladeron G,Araujo-Vargas I.Relative Coupling Strategy[C].2003 IEEE International Electric Machines and Drives Conference.USA:IEEE,2003:1162~1166.

[5]王成元,夏加宽,孙宜标.现代电机控制技术[M].北京:机械工业出版社,2008:128~129.

[6]Miroslav M,Hodder A,Perriard Y.Analysis of the Commutation Currents for a Sinusoidal BLDC Motor[C].2008 International Conference on Electrical Machines and Systems.Wuhan:IEEE,2008:3016~3019.

[7]苗新刚,汪芬,韩凌攀,等.基于偏差耦合的多电机单神经元同步控制[J].微电机,2011,44(2):44~47.

关于电机的控制技术分析 篇3

关键词:电动机工作原理维护技术分析

1电动机工作原理

目前较常用的主要是交流电动机,它可分为两种:①三相异步电动机。②单相交流电动机。第一种多用在工业上,而第二种多用在民用电器上。

三相异步电动机转动的基本工作原理是:①三相对称绕组中通人三相对称电流产生圆形旋转磁场。②转子导体切割旋转磁场感应电动势和电流;③转子载流导体在磁场中受到电磁力的作用,从而形成电磁转距,驱使电动机转子转动。

2电动机的运行维护

2.1电动机启动前的准备为了保证电动机正常安全地启动,一般启动前应作好下述准备:①检查电源是否有电,电压是否正常,若电源电压过高或过低,都不宜启动。②启动器是否正常,如零部件有无损坏,使用是否灵活,触头接触是否良好,接线是否正确、牢固等。③熔丝规格大小是否合适,安装是否牢固,有无熔断或损伤。④电动机接线板上接头有无松动或氧化。⑤检查传动装置,如皮带轻紧是否合适,连接是否牢固,联轴器的螺丝、销子是否紧固等。⑥传动电动机转子和负载机械的转轴,看其转动是否灵活。⑦检查电动机及启动电器外壳是否接地,接地线有无断路,接地螺丝是否松动、脱落等。⑧搬开电动机周围的杂物并清除机座表面灰尘、油垢等。⑨检查负载机械是否妥善地作好了启动准备。⑩对正常运行中的绕线式电动机,应经常观察电动机滑环有无偏心摆动现象:观察滑环的火花是否发生异常现象。滑环上碳刷是否要更换。

2.2启动时应注意的问题①接通电源后,如果电动机不转,应立即切断电源,绝不能迟疑等待,更不能带电检查电动机发故障,否则将会烧毁电动机和发生危险。②启动时应注意观察电动机、传动装置、负载机械的工作情况,以及线路上的电流表和电压表的指示,若有异常现象,应立即断电检查,待故障排除后,载行启动。③利用手动补偿器或手动星三角启动器启动电动机时,特别要注意操作顺序。一定要先将手柄推到启动位置,待电动机转速稳定后再拉到运转位置,防止误操作造成设备和人身事故。④同一线路上的电动机不应同时启动,一般应由大到小逐台启动以免多大电动机同时启动,线路上电流太大。电压降低过多,造成电动机启动困难引起线路故障或使开关设备跳闸。⑤启动时,若电动机的旋转方向反了,应立即切断电源,将三相电源线中的任意两相互换一下位置,即可改变电动机转向。

2.3电动机运行中的监视电动机在运行时,值班工作人员可以通过仪表和感觉器官监视其运行情况,以便及早发现问题,减少或避免故障的发生。

2.3.1监视电动机的温度电动机正常运行时会发热,使电动机温度升高,但不应超出允许的限度。如果电动机负载过大,使用环境温度过高,通风不畅或运行中发生故障,就会使其温度超出允许限度,导致绕组过热烧毁,因此电动机温度的高低是反映电动机运行的主要标志,在运行中经常检查。判断电动机是否过热,可以用以下方法:①凭手的感觉:如果以手接触外壳,没有烫手的感觉,说明电动机温度正常:如果手放上去烫得马上缩回来,说明电动机已经过热。②在电动机外壳上滴2-3滴水,如果只冒热气没有声音,则说明电动机没有过热,如果水滴急剧汽化同时伴有“咝咝”声,说明电动机已经过热。③判别电动机是否过热的准确方法还是用温度计测量。发现电动机过热应该立即停车检查,等查明原因,排除故障后再行使用。

2.3.2监视电动机的电流一般容量较大的电动机应装设电流表,随时对其电流进行监视。若电流大小或三相电流不平衡超过了允许值。应立即停车检查。容量较小的电动机一般不装电流表,但也经常用钳形表测量。

2.3.3监视电动机的电压电动机的电源上最好装设一只电压表和转换开关,以便对其三相电源、压进行监视。电动机的电源电压过高、过低或三相电压不平衡,特别是三相电源缺相,都会带来不良后果。如发现这种情况应立即停车,待查明原因,排除故障后再使用。

2.3.4注意电动机的振动、响声和气味电动机正常运行时,应平稳、轻快、无异常气味和响声。若发生剧烈振动,噪音和焦臭气味,应停车进行检查修理。

2.3.5注意传动装置的检查电动机运行时要随时注意查看皮带轮或联轴器有无松动,传动皮带是否有过紧、过松的现象等,如果有,应停车上紧或进行调整。

2.3.6注意轴承的工作情况电动机运行中应注意轴承声响和发热情况。若轴承声音不正常或过热,应检查润滑情况是否良好和有无磨损。

2.3.7注意交流电动机的滑环或直流电动机的换向器火花电动机运行中,电刷与换向器或滑环之间难免出现火花。如果所发生的火花大干某一规定限度,尤其是出现放电性的红色电弧火花时,将产生破坏作用,必须及时加以纠正。

2.4电动机的定期检查和保养为了保证电动机正常工作,除了按操作规程正确使用,运行过程中注意监视和维护外还应进行定期检查和保养。间隔时间可根据电动机的类型、使用环境决定。主要检查和保养项目如下:①及时清除电动机机座外部的灰尘、油泥,如使用环境灰尘较多,最好每天清扫一次。②经常检查接线板螺丝是否松动或烧伤。③定期测量电动机的绝缘电阻,若使用环境比较潮湿更应经常测量。④定期用煤油清洗轴承并更换新油(一般半年更换一次),换油时不应上满,一般占油腔的1/2~1/3,否则,容易发热或甩出,油要从一面加人,可以把没有清洗干净的杂质,从另一面挤出来。⑤定期检查启动设备,看触头和接线有无烧伤,氧化,接触是否良好等。⑥绝缘情况的检查。绝缘材料的绝缘能力因干燥程度不同而异,所以保持电动机绕组的干燥是非常重要的。电动机工作环境潮湿、工作间有腐蚀性气体等因素的存在,都会破坏电动机的绝缘。最常见的是绕组接地故障即绝缘损坏,使带电部分与机壳等不应带电的金属部分相碰,发生这种故障,不仅影响电动机正常工作。还会危及人身安全。所以电动机在使用中,应经常检查绝缘电阻,还要注意查看电动机机壳接地是否可靠。⑦除了按上述几项内容对电动机定期维护外,运行一年后要大修一次。大修的目的在于,对电动机进行一次彻底、全面的检查、维护,增补电动机缺少、磨损的元件,彻底清除电动机内外的灰尘、污物,检查绝缘情况,清洗轴承并检查其磨损情况。

3小结

《电机与电气控制》教案 篇4

一、常用低压电器元件的原理及使用方法回顾

理论知识回顾:各常用元件的结构、工作原理、作用及图形符号。

实践测试:※1应用万用表、稳压电源等测试各元件的触点情况和工作特性。(基本要求)

※2 检测元件好坏,找出故障元件的故障点,尝试维修。(提高要求)

1、开关类电器

(1)刀开关(闸刀开关)

a、作用:不频繁地接通和分断小容量的低压线路

b、安装注意点:1、瓷底应与地面垂直,闸刀的手柄一定要向上安装。 2、它的上端接电源线,下端接负载。 C、符号

(2)转换开关(组合开关)

a、作用:控制小容量异步电动机的不频繁起动和正反转、星三角起动等。 b、符号

(3

功能: a、通断电路。

b、多种保护功能,短路、过载、欠流保护。

(4)漏电保护器(漏电保护自动开关)

功能:主要用于当发生人身触电或漏电时,能迅速切断电源,还兼有过载、短路保护,用于不频繁起、停电动机。

原理:以电磁式电流型漏电保护器为例。 正常工作,流过零序电流互感器电流和为零。

漏电或触电时,电流和不为零,该电流经过人体、大地构成回路。零序电流互感器二次侧感应出电流,该电流达到一定值时,脱扣器动作。分断主电路。

2、主令电器

发出指令信号,并通过继电器、接触器,其他电器的动作通断控制电路。 (1)按钮

类型:是一种手动的可以自动复位的主令电器。

通断5A以下小电流电路。 分类:停止按钮,动断,红色。

起动按钮,动合,绿色。 复式按钮。

结构:常闭(动断)触点、常开(动合)触点、复位弹簧、按钮帽。 符号:

(2)行程开关(限位开关、位置开关)

原理:利用生产机械运动部件的碰撞,使其内部触点动作,分断和切换电路 符号:

(3

特点:挡位多,触点多,可控制多个电路。有万能之称。 结构:有多层凸轮及与之对应的触点底座叠装而成。

使用:操作时,手柄带动转轴与凸轮同步转动,凸轮的转动即可驱动触点系统的分断与闭合

QS 注意

3、1.作用:用于远距离频繁地接通与断开交直流主电路及大容量控制电路的一种自动切换电器。能低压释放,频繁操作,远距离控制。

2.原理

同电磁机构。线圈得电,衔铁吸合,触点动作。 线圈失电,衔铁释放,触点复位。 3.结构

线圈、铁心、衔铁 、触头、灭弧装置 4.触头数目:

常开主触头(三个)------- 用来控制大电流的主电路的通断;

一对常闭辅助触头和一对常开辅助触头------用来控制小电流的控制电路的通断

5、符号

6、特点:1、以小控大

2、具有远距离控制

3、具有欠压和失压保护

7、接触器的选择

电压、电流、线圈电压,触点数量。

4、 继电器

1.与KM区别

对电量、非电量进行反映,容量较小,无灭弧装置。

2、电磁式继电器

工作原理:电磁原理(与交流接触器相似)

类型:

(1)电流继电器(KI):反映电路中电流的变化,串联在电路中,内阻小。导线粗。

过电流继电器:电路正常时衔铁不动作,一旦电流超过整

定值时,衔铁吸合。

欠电流继电器:电路正常时衔铁吸合 ,一旦电流小于整

定值时,衔铁释放(注意动作)。

(2)电压继电器(KV):反映电路中电压的变化,并联在电路中,匝数多,导线细,内阻大。

过电压继电器:电路正常时衔铁不动作,一旦电压超过整

定值时,衔铁吸合。

欠电电继电器:电路正常时衔铁吸合 ,一旦电压小于整

定值时,衔铁释放(注意动作)。

零电压继电器:电压降到5%~25%动作。

(3)中间继电器

实质:是电压继电器

作用:增加触头的数量和容量,起到中间信号的转换和放大作用。

(4)符号

3、时间继电器(KT)

(1)功能

利用电磁式或机械原理实现延时闭合或断开。

有电磁式、空气阻尼式、电动式、晶体管式。

空气式时间继电器:利用空气阻尼的作用达到延时效果。

(2)类型:

通电延时

断电延时

4、热继电器(FR)

作用:过载保护。

结构:三个热元件(由双金属片作成)、常闭、常开触头 。

原理:利用电流热效应。当电动机过载时,电路中电流过大,电流通过热继电器的热元件,双金属片发热弯曲,推动推竿使常闭触头动作,切断控制电路。

连接:三个热元件接入主电路中,将常闭触头接入控制电路中。

符号:

5作用:短路保护 原理:电流的热效应。当电流达到额定电流的1.3―2倍,熔体开始熔断,电路短路时,电流很大,熔体迅速熔断。具有反时限特性。

符号:

二、电气设计中的工艺设计

工艺设计是为了达到制造安装和使用要求。除了必须绘制的安装图、元器件明细表外,还有一些必要的文字说明。

1.元器件选择

要进行必要的计算,选择元件的型号、规格等参数。为了提高可靠性和减小体积,应尽可能选用新型器件。为了降低成本,应尽可能选用最通用的器件。当材料供应环节不能保证时,应提供备选器件。(鼓励使用新型元件)

2.元器件安装位置

拖动、执行、检测器件等应安装在生产机械的相应工作部位。控制电器、保护电器等安装在电器箱(柜)内。控制按钮、操作开关、经常调节的电位器、指示灯、指示仪表等安装在控制台面板上。

3.元器件布置

(1)功能相似的元件组合在一起,外形尺寸或重量相近的元件组合在一起,经常调节的元件组合在一起,经常更换的易损元件组合在一起。

(2)强电与弱电要分开。有必要时,将弱电部分屏蔽起来。

(3)体积大、重量重的元件安装在下面,发热量较大的元件安装在上面。

(4)尽可能减少连线数量和长度,将接线关系密切的元件按顺序组合在一起。

(5)电器板、控制板的进出线一般采用接线端子。接线端子接线时,主电路与控制电路要分开,电源进线位于最边上。接线端子按电路电流大小选用不同规格,按规格大小排列在一起,非必要时不要分开布置。当电器箱小、进出线少时,可以采用标准接插件,便于拆装和搬运。

4.线路连接

(1)导线截面必须根据负载核算。一般主电路导线截面不小于1.5mm2,控制电路导线截面不小于0.75mm2。

(2)导线种类根据需要选择。不同电器箱之间或电控柜与负载之间用软电线。信号线用屏蔽线。电控柜内部连线用硬电线,但是若元器件数量多、控制复杂时,宜采用软电线,并考虑板后走线。现代化电控柜讲究美观和接线方便,除了截面大的粗电线,均采用软电线板前走线,多余长度电线收入走线槽内。

(3)导线接线前要在两端套上标号相同的绝缘号码套管。套管标号应与原理图一致,若没有字母标号时,在不致误解或与其他号码重复条件下,可适当处理,如:用0代替或省略,然后在图纸上加以说明。现在普遍使用的异型绝缘号码套管事先打上0~9号,预加工了人字型缺口。使用时要注意方向,箭头方向指向剥去绝缘层的裸露端,从裸露端开始读数。示例如下:

60号

9号

6号

(4)导线安装接线按照电工基本技能操作。如:剥去绝缘层使用剥线钳,若用电工刀或尖嘴钳应注意不要损伤导电线芯;“羊眼圈”应顺时针方向弯;接线后裸露长度不超过2mm;硬电线弯曲应成900,不得在接线处弯曲;软电线接线前要将多股线绞起来,接线后不得露出散线。

第三讲

一、章节:《电气控制课程设计》

电气控制课程设计基本电路

二、教学目标

应知: 电气设计基本电路的原理及设计

应会:电气控制系统的设计方法、设计思路及设计步骤;

难点:电气控制系统的设计方法

提高:设计电路调试及排除故障方法

三、教学方法:

引导分析 设计

四、教学过程:

1、分析基本控制电路原理及设计

2、对照学生所学选课题引导分析

五、问题与讨论:

1、所选课题可能用到那些基本电路环节?

2、设计电路还有那些可以改进的地方?

六、考工必备

对于基本设计电路的理解分析和应用

七、课后小结:

PID控制电机实验报告 篇5

摘要

以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。

关键词:变频器PID调节 闭环控制

一、实验目的和任务

通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通

过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务:

1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的.梯形运行图与s形运行图。

3、通过单片机实现电机转速的开环控制。

4、通过单片机实现电机的闭环控制。

二、实验设备介绍

装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。

三、硬件电路

1.变频器的简介

变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

2.变频器的使用

《驱动电机及控制技术》教学大纲 篇6

一、授课对象

本课程适用于 汽车服务系新能源汽车制造与装配专业(中、高级)班 三年 制 二、课程学时

总学时 108课时,6课时/周,1学期授完。

三、课程的任务和目的

本课程是中等职业学校电子技术应用与维修专业教材,是一门机电类专业课程。其任务是:使学生掌握常用电动机的结构及其控制方法,培养学生对常用电动机的维护、保养与检修的技能和解决实际问题的能力;对学生进行职业意识培养和职业道德教育,提高学生的综合素质与职业能力,增强学生适应职业变化的能力,为学生职业生涯的发展奠定基础。

本课程目的是:使学生能掌握电动类、制冷类日用电器中主要使用的三种电动机——单相异步电动机、直流电动机和单相串励电动机的结构、原理及应用,以及电动类、制冷空调类电器专用电动机的结构及其控制方法。熟悉对上述电动机进行维护、保养与检修。结合生产生活实际,培养学生对所学专业知识的兴趣和爱好,养成自主学习与探究学习的良好习惯,从而能够解决专业技术实际问题,养成良好的工作方法、工作作风和职业道德。

四、课程内容和要求

第一章:直流电动机 8课时 1.教学内容:

第一节:直流电动机的结构和分类

第二节:直流电动机的工作原理与运行特性 第三节:直流电动机的起动、反转和调速。

2.教学要求与建议:了解直流电动机的基本结构和分类,掌握直流电动机的基本工作原理,理解直流电动机的起动、反转、调速的原理和方法,初步了解直流电动机常见故障的检修方法。

第二章:单相异步电动机 10课时 1.教学内容:

第一节:异步电动机的结构和工作原理 第二节:单相异步电动机的分类 第三节:单相异步电动机的反转和调速

2.教学要求与建议:了解单相异步电动机的基本结构,掌握单相异步电动机的基本工作原理,理解异步电动机的分类和起动方式,了解单相异步电动机的反转、调速的原理和方法,初步了解单相异步电动机常见故障及其检修方法。第三章:单相串励电动机 12课时

1、教学内容

第一节:单相串励电动机的结构和运转原理 第二节:单相串励电动机的运行特性 第三节:单相串励电动机的反转和调速

2、教学要求与建议:理解单相串励电动机的基本结构和工作原理,了解单相串励电动机的主要特点和应用。

第四章:三相异步电动机 16课时 1.教学内容:

第一节:三相异步电动机的结构和工作原理 第二节:三相异步电动机的运行特性

第三节:三相异步电动机的反转、起动和调速 2.教学要求与建议:

了解三相异步电动机的基本结构,掌握三相异步电动机的基本工作原理和运行特性,理解三相异步电动机起动、反转与调速的原理和方法。

第五章:其他类型的电动机简介 10课时

1、教学内容:

第一节:单相同步电动机 第二节:步进电机

2、教学要求与建议:

了解其他类型的电动机(包括单相同步电动机、步进电机和直线电动机)的基本结构、原理和应用。

第六章:电风扇电动机及其控制 16课时

1、教学内容: 第一节:电风扇电动机 第二节:电风扇控制电路

2、教学要求与建议:

掌握电风扇的电控方式,各种常用电控器件的结构、原理和使用方法;能够阅读典型的电风扇电控线路图。

第七章:空调电动机及其控制 16课时

1、教学内容:

第一节:制冷压缩机电动机的结构与原理 第二节:空调控制电路

2、教学要求与建议 掌握空调的压缩机电动机的结构、工作原理及应用;掌握空调的基本控制方式,常用电控器件的结构、原理和使用方法,掌握其典型电控线路和读图方法。

第八章:各类电动机维修实训 20课时

1、教学内容:

实训一:电动机维修基础实训 实训二:直流电动机维修实训 实训三:单相异步电动机维修实训 实训四:电风扇电动机的检修

实训五:制冷压缩电动机及其控制电路的检修

2、教学要求与建议

掌握电动机维修常用工具和仪表的使用方法;掌握日用电器直流电动机的拆装方法和常见的检修方法;学会测定单相异步电动机的技术参数;掌握洗衣机电动机的拆装方法及常见故障的检修方法;掌握台扇、转页扇、吊扇的结构、电动机绕组展开图、电动机拆装、绕组重绕的方法及常见故障的检修方法;掌握电冰箱、空调器中制冷压缩机电动机的结构和常见故障的检修方法。

五、考核方式

步进电机控制策略研究 篇7

步进电机是一种受电脉冲信号控制的无刷式直流电动机,也可看作是在一定频率范围内转速与控制脉冲频率同步的同步电动机[1]。它具有易于开环控制、无积累误差、动态响应快、低速大转矩等优点,在众多自动化控制系统中已经得到了广泛的应用。步进电机系统性能的优劣、运行品质的好坏与其驱动及控制密不可分[2]。

近年来,数字技术、计算机技术和永磁材料的迅速发展,极大地推动着步进电机的发展,控制策略和控制电路的研究日益成为步进电机技术发展的重要问题[3]。因此,选择一种合适的控制策略,是发展高性能的步进电动机系统的关键。

1 PID控制

PID控制作为一种简单而实用的控制方法,在步进电机驱动中获得了广泛的应用,其控制原理图如图1所示。它根据给定值r(t)与实际输出值c(t)构成控制偏差e(t),将偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。

文献[4]将集成位置传感器用于二相混合式步进电机中,以位置检测器和矢量控制为基础,设计出了一个可自动调节的PI速度控制器,此控制器在变工况的条件下能提供令人满意的瞬态特性。文献[5]根据步进电机的数学模型,设计了步进电机的PID控制系统,采用PID控制算法得到控制量,从而控制电机向指定位置运动。最后,通过仿真验证了该控制具有较好的动态响应特性。

采用PID控制器具有结构简单、鲁棒性强、可靠性高等优点,但是它无法有效应对系统中的不确定信息。目前,PID控制更多的是与其他控制策略相结合,形成带有智能的新型复合控制。这种智能复合型控制具有自学习、自适应、自组织的能力,能够自动辨识被控过程参数,自动整定控制参数,适应被控过程参数的变化,同时又具有常规PID控制器的特点[5,6,7,8]。

2 自适应控制

自适应控制是在20世纪50年代发展起来的自动控制领域的一个分支。它是随着控制对象的复杂化,当动态特性不可知或发生不可预测的变化时,为得到高性能的控制器而产生的。其主要优点是容易实现和自适应速度快,能有效地克服电机模型参数的缓慢变化所引起的影响,是输出信号跟踪参考信号。文献[9]研究者根据步进电机的线性或近似线性模型推导出了全局稳定的自适应控制算法,这些控制算法都严重依赖于电机模型参数。文献[10]将闭环反馈控制与自适应控制结合来检测转子的位置和速度,通过反馈和自适应处理,按照优化的升降运行曲线,自动地发出驱动的脉冲串,提高了电机的拖动力矩特性,同时使电机获得更精确的位置控制和较高较平稳的转速。

目前,很多学者将自适应控制与其他控制方法相结合,以解决单纯自适应控制的不足[11,12,13,14]。文献[11]设计的鲁棒自适应低速伺服控制器,确保了转动脉矩的最大化补偿及伺服系统低速高精度的跟踪控制性能。文献[12]实现的自适应模糊PID控制器可以根据输入误差和误差变化率的变化,通过模糊推理在线调整PID参数,实现对步进电机的自适应控制,从而有效地提高系统的响应时间、计算精度和抗干扰性。

3 矢量控制

矢量控制是现代电机高性能控制的理论基础,可以改善电机的转矩控制性能。它通过磁场定向将定子电流分为励磁分量和转矩分量分别加以控制,从而获得良好的解耦特性,因此,矢量控制既需要控制定子电流的幅值,又需要控制电流的相位。由于步进电机不仅存在主电磁转矩,还有由于双凸结构产生的磁阻转矩,且内部磁场结构复杂,非线性较一般电机严重得多,所以它的矢量控制也较为复杂。文献[8]推导出了二相混合式步进电机d-q轴数学模型,以转子永磁磁链为定向坐标系,令直轴电流id=0,电动机电磁转矩与iq成正比,用PC机实现了矢量控制系统。系统中使用传感器检测电机的绕组电流和转自位置,用PWM方式控制电机绕组电流。文献[15]推导出基于磁网络的二相混合式步进电机模型,给出了其矢量控制位置伺服系统的结构,采用神经网络模型参考自适应控制策略对系统中的不确定因素进行实时补偿,通过最大转矩/电流矢量控制实现电机的高效控制。

4 智能控制的应用

智能控制不依赖或不完全依赖控制对象的数学模型,只按实际效果进行控制,在控制中有能力考虑系统的不确定性和精确性,突破了传统控制必须基于数学模型的框架。目前,智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制、神经网络和智能控制的集成。

4.1 模糊控制

模糊控制就是在被控制对象的模糊模型的基础上,运用模糊控制器的近似推理等手段,实现系统控制的方法。作为一种直接模拟人类思维结果的控制方式,模糊控制已广泛应用于工业控制领域。与常规控制相比,模糊控制无须精确的数学模型,具有较强的鲁棒性、自适应性,因此适用于非线性、时变、时滞系统的控制。文献[16]给出了模糊控制在二相混合式步进电机速度控制中应用实例。系统为超前角控制,设计无需数学模型,速度响应时间短。模糊控制器结构如图2所示。

模糊控制在步进电机中的应用简化了控制器结构,但模糊控制也有其自身的弊端,如学习能力不强,设计的控制规则过于依赖经验和专家知识,组成的系统对电机非线性不敏感,因此,目前更多的模糊控制应用是与其他控制策略复合使用[7,12,17,18,21,22]。文献[17]针对混合式步进电机这种非线性、不确定性系统的应用场合,提出了基于模糊增量式PID控制方案,它是集增量式PID控制和模糊控制的优点于一体的控制系统,结果显示了该方案具有较强的跟踪性能。文献[18]依据IP位置控制器,按照经典控制理论建立了二相混合式步进电机的线性参考模型,为使系统保持良好的鲁棒性和模型跟踪能力,克服参数时变和外界干扰的影响,建立和实现了参数在线调整的模糊神经网络控制器,实验证明这种控制器具有良好的性能。

4.2 神经网络控制

神经网络是利用大量的神经元按一定的拓扑结构和学习调整的方法。它可以充分逼近任意复杂的非线性系统,能够学习和自适应未知或不确定的系统,具有很强的鲁棒性和容错性,因而在步进电机系统中得到了广泛的应用。文献[19]将神经网络用于实现步进电机最佳细分电流,在学习中使用Bayes正则化算法,使用权值调整技术避免多层前向神经网络陷入局部极小点,有效解决了等步距角细分问题。

神经网络在实际的应用中,往往与其他控制组合成复合控制[6,20,21,22]。文献[6]采用BP网络能以任意精度逼近连续非线性函数,对复杂不确定问题具有自适应和自学习能力,结合PID鲁棒性强的优点构成一种神经网络控制器。其中BP网络可自学习在线调整PID参数,从而控制步进电机。文献[20]利用BP网络选取步进电机优化控制量,将神经网络控制与最优化控制有机地结合起来,它可以充分利用这些控制量与各自对应的非均匀步距输出之间的关系,训练神经网络逼近输入与输出之间复杂的非线性关系。对优化控制量模拟的结果表明,BP网络能过实现对这一非线性关系的精确逼近。

5 结 语

本文主要介绍了PID控制、自适应控制以及智能控制在步进电机控制中的应用。各种控制策略各有优缺点,在实际应用中应当根据性能要求采用与之相适宜的控制策略。

直流电机的单片机控制 篇8

系统首先通过按键对电机的正、反向(即顺时针、逆时针)转动时间分别设置,设置的时间显示在LCD液晶显示器1602上,格式为第一行显示Forward(正转) 时:分:秒,第二行显示Backward(反转) 时:分:秒。采用倒计时方式。时间设定完成后,按下开始键,电机工作指示灯闪烁,正向转动时间开始倒计时,正向转动指示灯亮(红灯亮),同时电机正向转动;当正向转动时间倒计时到0,反向转动时间立即开始倒计时,正向转动指示灯熄灭,反向转动指示灯亮(绿灯亮),同时电机反向转动。当反向转动时间倒计时也到0时,系统自动恢复到初始设定的时间。按下停止键,正(反)转倒计时停止计时,直流电机停止工作,电机工作指示灯熄灭。

系统硬件结构如图1所示。

图1系统硬件结构

系统的控制芯片采用Atmel公司的AT89C51。6个按键分别连接到单片机的P2.0~P2.5口,作为按键控制信号的输入。按下K0键,系统进入时间设定模式,连续按下K0键可以依次选择时、分、秒进行设置,通过K1,K2键对时、分、秒进行加1或减1操作。按下K3键退出时间设定模式,K4,K5键分别为启动键和停止键。

P0.0~P0.7作为数据总线连接到LCD1602的数据线,需要外接上拉电阻。P1.0、P1.1、P1.2分别接1602的控制端RS、R/W、EN端。P1.3、P1.4、P1.5分别作为电机工作指示灯、正转指示灯、反转指示灯的控制信号输出。P1.6、P1.7分别是控制电机启/停、正/反向转动的控制信号输出。

系统的显示部分采用字符型液晶显示器LCD1602。它可以显示2行、每行显示16个ASCII字符。主控制驱动电路为HD44780 (HITACHI )。采用标准的接口特性适配M6800系列MPU操作时序和标准的16脚接口,工作电压为5V。

系统选用的直流电机为HY37JB363。由于单片机的I/O口提供的输出电流只有几mA,而直流电机的额定工作电流需要几百mA,所以在单片机与直流电机之间需加一个驱动电路,系统选用的是LMD18200芯片。

系统软件由主程序、数据处理子程序、定时器0中断服务子程序、按键处理子程序以及液晶显示子程序等组成。

主程序:完成系统的初始化、按键扫描、数据处理及显示程序。初始化完成之后,扫描按键,如有按键按下,调用相应的处理程序。K0被按下时,被选中的时间单位将会不断的闪烁,区别于其他没有被设置的时间单位,通过K1,K2键对时间进行夹1/减1改动,按下K3键退出时间设定。启动键被按下时,开启定时中断,LCD显示时间开始倒计时,P1.4口输出低电平,正向转动指示灯(红灯)亮,P1.7输出高电平,电机开始正向转动。在中断服务程序中控制P1.3口输出电平,使电机工作指示灯(黄灯)闪烁。停止键按下时,P1.6输出高电平,直流电机停止转动,P1.3~P1.5输出高电平,各状态指示灯熄灭,关闭定时中断,停止计数。正向转动时间倒计时到0时,反向转动立即开始倒计时,P1.7输出低电平,电机反向转动,P1.4输出高电平,P1.5输出低电平,正转指示灯熄灭,反转指示灯(绿灯)亮。反向转动时间倒计时也到0时,系统自动恢复到初始设定的时间。

数据处理子程序:将秒、分、时计数器的数据分别处理后送显示缓冲区。

定时器0中断服务子程序:完成计时功能。每定时50ms产生一次中断,利用软件对中断进行累加计数,当定时器产生20次中断后(即1S后),秒单元减1。同理,对分、时单元也分别处理。

按键处理子程序:完成按键的防抖动处理、判键及设置正反转时间的秒、分、时和控制直流电机启/停和正/反转。

液晶显示子程序:第一行显示格式为: Forward(正转) 时:分:秒。第二行显示格式为:Backward(反转) 时:分:秒。

上一篇:山东省成人高考下一篇:测量放线作业指导书