数字信号处理(DSP)课程设计报告

2024-04-18

数字信号处理(DSP)课程设计报告(精选9篇)

数字信号处理(DSP)课程设计报告 篇1

2012级专业综合实践”

报 告

报告题目 :DSP数字图像取反课程设计 学 院 :电气信息学院 作 者 :曾翔

联系方式 :*** 辅导老师 :曹玉英

完成日期 : 2016年 01月 12日1

“通信工程

目录

目录....................................................................................................................错误!未定义书签。

设计目的..............................................................................................................................................2

设计要求..............................................................................................................................................2

设计方案描述......................................................................................................................................2

设计原理..............................................................................................................................................2

实验步骤..............................................................................................................................................3

硬件原理图..........................................................................................................................................4

程序流程图..........................................................................................................................................5

源程序..................................................................................................................................................5

运行结果..............................................................................................................................................6

心得体会..............................................................................................................................................6

参考文献..............................................................................................................................................7

数字图像取反

一、设计目的

1、通过课程设计,使综合运用DSP技术课程和其他有关先修课程的理论和生产实际知识去分析和解决具体问题的能力得到提高,并使其所学知识得到进一步巩固、深化和发展

2、通过课程设计初步培养学生对工程设计的独立工作能力,学习设计的一般方法。通过课程设计树立正确的设计思想,提高分析问题、解决问题的能力

3、通过课程设计训练学生的设计基本技能,如计算、绘图、查阅设计资料和手册,熟悉标准与规范等。

二、设计要求

1、通过本课程设计对CCS软件有更进一步的了解,充分掌握DSP的设计思想,加深对TMS320C55XDSP的理解与使用,熟悉DSP的编程语言。

2、编写程序,在TMS320C5509上实现,能从计算机上读取图片。

3、按时参加课程设计指导,定期汇报课程设计进展情况。

4、广泛收集相关技术资料, 按时完成课程设计任务,认真、正确地书写课程设计报告。

三、设计方案的描述

本系统的硬件组成框图如图1 所示.虚线框内是DSP信号处理实验板, 其余为外围输入输出设备.其中电源部分采用LT1767EMS8-5开关电源芯片产生5V 电压, 然后通过三个低功耗正向电压调节器分别产生系统内部需要的电压.复位电路保证当DSP 出现故障时, 产生复位信号使整个系统复位重新启动.本系统扩充1M Byte SRAM 和1M Byte FLASH 作为外部存储器, 其中SRAM 用于存储处理前后以及处理过程中的视频和音频数据, FLASH 用于存储系统的监控程序, 系统通电后, DSP从FLASH 中加载监控程序, 系统加载引导结束后, 由监控程序负责切换为SRAM 作为外部存储器.软件部分主要包括PC 端应用程序和图像处理实验程序.PC 端应用程序提供用户接口和程序的调试环境.用户在PC 端CCS开发环境下完成DSP程序的编辑、编译、链接、调试, 并通过JTAG 接口仿真器将out文件下载到实验箱的DSP芯片上执行.在PC 端和DSP图像处理实验箱之间定义了一系列的交互命令, 使得整个实验过程均通过PC 端进行控制, 如通信端口选择、参数配置、实验过程的管理等.DSP图像处理系统程序在系统的DSP芯片上运行, 其主要功能是完成图像数据采集、存储和处理, 并将处理好的图像数据传送到PC 端.每个处理模块项目对应一套独立的图像处理程序, 其中包括DSP图像处理实验板监控程序和对应的图像处理算法实验程序, 其中用户可对图像处理算法处理程序进行二次开发.四、设计原理

设输入图像为f(x, y),反色后的图像为g(x, y), 那么图像反色的方法为: g(x,y)255f(x,y)

五、实验步骤

1)打开CCS,选择 C5410 Device Simulator 环境。

2)打开工程:在 [Project] 菜单中选择 [Open] 选项,然后在打开的对话框中打开----fanse image912.pjt。

3)编译链接:;或在 [Project] 菜单中选择 [Rebuild All] 选项。

下面点击左边工具条中的图标在弹出的窗口中手动改变DROM原始“0”值

改为“1”(双击DROM行即可)如下图

4)载入程序:选择 [File] 菜单中的[Load Program] 选项,在打开的对话框中打开----fanse Debug imag912.out。

5)将待处理的位图文件(如lena.bmp)复制到文件夹----fanse Debug中。

6)运行程序:;根据output window中的提示在弹出的对话框中输入待处理的文件名(如 lena.bmp);

然后会在output window 中出现 ”zz” 说明处理成功并自动结束运行。选择view->graph->image„。设置对话框中的参数:(注:按下图中数值改变)

7)点击“OK”查看结果;或打开----fanse Debug lena.bmp 位图文件,查看运行结果。

六、硬件原理图

七、程序流程图

八、源程序

主要程序

#include “stdio.h” extern unsigned char *i_img;extern unsigned char *o_img;extern unsigned char *shadow_buf;extern unsigned int palette_size;extern unsigned long img_row,img_col,line_size;main(){ char filename[40];printf(“Please input BMPimage filename[*.bmp]:n”);scanf(“%s”,filename);ReadBMPHeadInfo(filename);printf(“openedn”);

i_img =(unsigned char *)alloc_mem(img_row*line_size);load_data(filename,i_img);o_img =(unsigned char *)alloc_mem(img_row*line_size);FanSe(i_img,o_img,line_size,img_row);save_data(filename,o_img);free(i_img);free(o_img);printf(“zzn”);}

九、运行结果

下面左图为待处理的原图,右图为反色后的图像。

十、心得体会

本次DSP课程设计的题目是数字图像取反。通过本次课程设计,CCS有了更深的了解。本次设计所使用的CCS软件以前做实验的时候使用过,但是不是很熟悉。首先我将书本上的相关知识进行了了解,然后又查阅了一些相关的资料,从而确定了设计方案。有了设计方案后,还要使用仿真软件进行仿真。通过阅读老师给的软件帮助文件,逐渐了解软件的操作方法。然后再按照书上给的例子,自己使用软件进行模仿,熟悉软件的操作方法及各模块的作用。在课程设计的过程中也遇到很多的困难,如对CCS系统的不熟悉,实验系统参数设置合理等这些问题,自己查阅资料大部分都得到解决。通过这次课程设计对DSP课程的认识也得到了加深,通过学习能对生活中的一些软件的认识不再是停留在它的外观,而是有了科学的理解等等。在今后的学习中我们更应该注重理论与实践的结合,努力加强自己的综合素质培养。

通过这次的课程设计让我对DSP原理及应用这门课程的认识也得到了加深,初学课程是感觉摸不着头脑,面对陌生的名词感觉这就是非常难的课程,但随着学习的深入感觉到原来 7

这是一门都么有趣的课程,通过学习能对生活中的一些设备的认识不再是停留在它的外观,而是有了科学的理解。通过这次课设,我对以前学过的知识也进行了巩固,加深了理解,提高了应用的能力,而且也提高了我的发现、分析、解决问题的能力。我充分认识体会到学习理论知识固然重要,但在你学完了之后,你不在实践中运用你所学的知识,我想学是白学了,过一段时间后,你可能什么都记不起来了,或许在学的时候心里有一个概念,认为这个知识我曾经学得不错,我现在怎么想不起来了,一心想依赖课本和网络;如果我们用实践来学习知识,你会努力地去搜索你想要需要的东西,即使是过了一段时间后,你也会记得你曾经对这点不明白认真地查阅过,所以你不容易忘记。

最后,衷心地感谢老师帮我处理了一些解决不了的问题,还要感谢在我思维陷入困境时给予我指点的同学,谢谢大家。

十一、参考文献

数字信号处理(DSP)课程设计报告 篇2

DSP往往有两方面的含义, 一方面指Digital Signal Processing, 即数字信号处理, 另一方面则指Digital Signal Processor, 即数字信号处理器。《数字信号处理—DSP》课程主要讲授的是DSP处理器的知识, 涉及到的DSP就是指数字信号处理器。在当今的数字化时代背景下, DSP技术的地位尤为突显。因为数字化的基础就是数字信号处理, 而数字信号处理的任务, 特别是实时处理的任务, 主要是由通用的或专用的DSP处理器来完成的[1]。目前, DSP已成为通信、计算机、消费类电子产品等领域的基础器件, 被誉为信息社会革命的旗手。甚至有业内人士预言, DSP将是未来集成电路中发展最快的电子产品, 并成为电子产品更新换代的决定因素, 它将彻底变革人们的工作、学习和生活方式。

2《数字信号处理—DSP》课程的开设目的及教学现状

2.1 开设目的

《数字信号处理—DSP》课程是作为我院计算机科学与技术专业嵌入式方向学生三年级第二学期的专业方向选修课来开设的。目前, 嵌入式系统方向的发展是非常迅速的, 我国也缺少大量的这方面的专业人才。为了紧密联系市场需求, 丰富学生的选择, 我院设置了嵌入式方向供学生选择。在传统的嵌入式应用中, 分别采用通用微处理器 (或微控制器) 和DSP内核来执行通用功能与信号处理算法。因此, 开设《数字信号处理—DSP》课程可以帮助计算机科学与技术专业的学生填补DSP处理器方面知识的空白, 也为今后从事嵌入式系统方向的工作奠定宽阔的基础。

2.2 教学现状

从2009级学生开始, 我们已经完成了两次《数字信号处理—DSP》课程的教学。由于我们的学生大都不太喜欢计算机硬件方面的学习和钻研, 而本课程又偏重对DSP芯片的原理讲解和应用, 因此, 选修的人数并不多, 所需的先修课程基础知识的积累也相对薄弱。此外, 这个时间恰逢一部分学生准备考研、一部分学生实训就业的敏感时期, 因此学生学习兴趣不高, 缺勤现象严重, 即使坐在教室里也不一定是在听课。所以DSP技术这门课程, 要想激起学生的学习兴趣, 在短暂的时间内, 使学生掌握它的精髓, 就需要不断的进行研究探索, 找出一种最适合这门课程的教学方法。

3《数字信号处理—DSP》课程的教学内容

3.1 理论授课内容

本课程初次授课时选用了电子科技大学彭启琮老师主编的《DSP技术的发展与应用》作为教材, 系统地介绍数字信号处理的基本思想和优越性, 对目前国内外最为流行的德州仪器C2000, C5000, C6000系列处理器硬件结构与软件结构做了详细描述。讨论了DSP的集成开发环境与工具。在算法方面, 涉及了常用的数字信号处理算法。工程实现方面讨论了DSP系统中最常见的硬件基本电路以及软件设计调试等工程问题。但由于所授内容主要围绕TMS320C54X系列芯片展开, 和我们的实验环境及设备存在一定的差距, 因此后期重新调整了教学内容。主要以TI公司的TMS320F2812系列芯片为描述对象, 以应用系统设计为主线, 系统地介绍了DSP技术的基础知识;典型的DSP芯片, TMS320F2812的体系结构、原理和指令系统;其次介绍了汇编语言开发工具、汇编程序设计和应用程序开发实例;然后从应用的角度介绍了DSP芯片的片内外设应用和DSP系统的硬件设计, 并通过几个应用系统设计实例介绍了DSP芯片的开发过程。

3.2 实验内容

为了更好地将理论和实践相结合, 使学生在短期内熟悉DSP处理器的结构和应用。在实验环节我们也设计了不同的实验项目:

1) CCS开发工具的使用。TI公司的DSP处理器在市场上占据主导地位, 而CCS则是TI公司提供的DSP开发工具, 因此, 要学好和用好TI公司的DSP处理器就必须先掌握CCS的基本使用。所以在这个实验项目中我们要求学生掌握CCS的基本操作方法以及一些高级工具的使用。

2) 基于DSP处理器的实验。例如DSP芯片存储器 (包括片内和片外) 配置及验证实验。

3) 基于DSP系统的实验。包括中断处理、定时器使用、A/D和D/A转换实验。

4) DSP片内外设实验。包括GPIO管脚使用、Mc BSP串口实验等。

5) DSP算法实验。包括FIR和IIR滤波器实验, FFT实验等。

6) DSP综合应用实验。包括电机控制、交通灯控制等实验。

上述实验根据学生的能力, 要求完成最基本的部分, 其余可以作为学生自由选择的项目。此外, 通过实验室开放的环节, 帮助那些对研究DSP处理器应用开发感兴趣的同学进一步掌握相关知识, 完成更高难度的设计。

4《数字信号处理—DSP》课程教学中存在的问题和改进的措施

4.1 存在的问题

《数字信号处理—DSP》课程的综合性和实践性都比较强, 而传统的教学往往存在重理论轻实践的现象, 加之学院本身缺乏工科背景的支持, 在教学中难免存在这样那样的问题。集中起来包括两方面。

1) 课程内容丰富, 对教师和学生的要求都比较高。一方面教师要在有限的学时内讲授大量对学生来讲完全陌生的内容, 在教学内容安排和学时分配以及教学方法的选择上都对教师提出了挑战。另一方面, 学生学习DSP不仅要掌握它的硬件结构, 还要学习汇编软件编程, 要求学生基础知识扎实。这样一来, 学生普遍存在畏难情绪, 影响了学习的效果。

2) 缺乏真正的实践场所和机会。我们目前的实验教学还是停留在实验室环境下, 无法给学生提供更广阔的平台去练习, 将相关课程的知识糅合到一起, 这样一来知识的学习就显得系统性不强。

4.2 改进的措施

1) 合理选择教学内容和方法, 大胆进行改革和探索。在教学内容上, 根据学生的特点和教学目标及给定的课时数, 对教学内容本身的深度、广度进行适当裁剪, 以学生能顺利接受新知识为准。在教学方法上, 加强案例教学法等新方法的应用。

2) 以电子设计大赛为契机, 以毕业设计为导向, 有意识的引导学生进行创新性实验和综合性实验的练习。此外, 积极为学生联系相应的实践实训基地, 帮助他们进一步明确所学知识的用处, 培养学生对课程的兴趣。

5 结论

随着数字信号处理技术的不断发展, DSP处理器的应用将会更加的普及。《数字信号处理—DSP》作为一门综合性强、内容多、实践性强的专业方向选修课程, 它的作用也会越来越重要。因此, 这门课程“教什么, 怎么教, 学什么, 如何学, 如何用”都将是今后相当长的时期内我们反复探索和研究的问题, 相信通过不懈的努力, 我们一定能够让这门课程取得满意的教学效果。

参考文献

[1]彭启琮, 李玉柏, 管庆.DSP技术的发展与应用[M].北京:高等教育出版社, 2002.

[2]周云松.DSP原理与应用课程教学研究与实践[J].福建电脑, 2005 (12) :159-161.

[3]赵红怡.DSP技术与应用实例[M].北京:电子工业出版社, 2008.

数字信号处理(DSP)课程设计报告 篇3

摘 要:根据目前数字图像处理技术发展和数字图像处理课程的教学情况,为增强学生对理论知识的理解,本文介绍了基于VC++软件平台的数字图像处理课程教学辅助软件的设计和实现。该软件主要包括图像文件操作、图像变换、图像增强与复原、图像分割和数学形态学等理论知识,并提供一个良好的交互式平台,可以自由调整各种算法的参数,使学生在较短的时间内熟悉并掌握数字图像处理课程中讲述的各种算法和技术。

关键词:数字图像处理;教学软件;VC++

中图分类号:TP391.41-4 文献标识码:A 文章编号:1007-9599 (2013) 09-0000-02

1 引言

数字图像处理是指将利用计算机对二维图像信号进行采集、处理和分析的过程。数字图像处理课程是计算机视觉、模式识别和人工智能等专业的一门重要专业课程,涉及面广、实用性强。数字图像处理技术涉及的环节较多,主要包括图像采集、图像变换、图像增强与复原、图像分割等,每个图像处理环节的方法也多种多样,而且数字图像处理技术的基础理论和算法比较抽象,对于学生来说,在课内时间掌握数字图像处理课程的主要内容有一定难度。现在有大量的图像处理应用软件,如Photoshop,但这些软件多是面向广告设计、图像修饰处理的应用软件,不适合数字图像处理技术的基本知识和案例教学。

本文设计并实现了基于VC++开发环境下的数字图像处理课程的教学辅助软件,可以提供数字图像处理系统各处理环节相关算法实现过程的演示,形象生动地完成该课程的各教学单元的授课内容,较好地帮助学生熟悉并消化数字图像处理技术涉及的理论和技术方法。

2 教学辅助软件设计

VC++是在Windows平台下的专业软件开发平台,广泛用于各种软件的开发。MFC是Microsoft公司提供的一套类库,以C++类的形式封装了Windows的API,是一套面向对象的函数库,方便用户编程。MFC是Win API和C++的结合,提供了MFC AppWizard自动生成框架,利用MFC中提供的各种类,可以简单地构建一个应用程序框架。OpenCV是一个基于C/C++语言的开源图像处理函数库,包含实现图像处理和计算机视觉方面的很多通用算法[1],其代码具有很好的移植性。在安装好VC++的Windows系统下安装好OpenCV库,并对软件进行配置,在工程中配置好所需要包含的库文件的路径等,即可方便的调用OpenCV库中的函数。

2.1 软件设计总体结构

本文所设计的软件主要围绕数字图像处理课程的基本知识和图像处理技术涉及的各种方法进行架构的。软件基于MFC的AppWizard多文档应用程序框架,并结合OpenCV库中的一些图像处理函数和设备无关位图DIB的一些操作函数实现了多种图像处理功能,如图1所示。

2.2 软件功能设计与实现

数字图像处理技术包含很多环节,根据软件的总体架构,本软件主要设计了文件操作、图像变换、图像增强与复原、图像分割和数学形态学模块,每个模块还设计了不同功能块。各模块的图像处理功能均可以对读入的图像进行连续处理,本节展示了部分功能块的处理过程。

2.2.1 文件操作

文件操作模块能够实现对图像等文件的常规操作,如打开、保存、另存为、打印等功能。本软件主要处理BMP位图格式的灰度图像,通过此模块可将待处理的图像读入到内存,以供其他模块调用,用于进一步图像处理。对于图像处理的每个步骤所得的结果图像均可以单独显示,并可进行保存等操作。

2.2.2 图像变换

图像变换模块可以实现位图的几何变换和图像的点运算,如图像平移,水平镜像,垂直镜像,图像缩放,图像旋转,分段线性拉伸,图像反色,二值化,阈值变换,窗口变换等功能。图像变换过程中需要设定的参数可以通过弹出对话框的方式进行设定,完成人机交互。

图2为利用图像反色和图像阈值变换处理图像的效果展示,其中左侧图为原始lena图像,中间的图为对原始lena图像进行反色后得到的图像,右侧图为对原始lena图像进行阈值(参数值设为200)变换后的图像。

图1 数字图像处理教学辅助软件总体结构图

图2 图像变换处理示意图

2.2.3 图像增强与复原

图像增强与复原模块可以实现图像滤波、图像对比度增强、图像恢复等功能,如对图像添加噪声、图像平滑、直方图均衡化、图像锐化处理、傅里叶变换、低通滤波、高通滤波、小波变换等处理。在添加噪声可以选择高斯噪声或椒盐噪声,图像平滑可以选择3*3、5*5、7*7等不同大小的模板进行邻域平均处理和中值滤波处理。图像直方图均衡化可以将直方图分布不均的图像进行调整,使整幅图像视觉效果更好。图像锐化可以实现梯度锐化和拉普拉斯锐化,能够提高图像的对比度。低通滤波可实现理想低通滤波和巴特沃斯低通滤波,高通滤波可实现理想高通滤波和巴特沃斯高通滤波。傅里叶变换可以实现图像从空间域到频率域的变换,可以对图像进行一些频域处理后再进行反变换。小波变换可以将图像分解成一个低频概貌子图像和一系列高频细节子图像,在变换域对这些子图像进行处理后进行反变换可实现对原图的修改。

图3为利用噪声添加和邻域平均法的效果展示图,首先,读取原始lena图像(左侧图像),然后对原始lena图像添加高斯噪声(中间图像),最后利用邻域平均法( 窗口)对含噪图像进行平滑处理(右侧图像)。

图3 图像平滑处理示意图

图4为对图像进行傅里叶变换和低通滤波处理的效果展示图,左侧图像为一幅黑色正方形图像,中间图像为其傅里叶变换频谱图,右侧图像为进行理想低通滤波后的结果图。

图4 图像滤波处理示意图

2.2.4 图像分割

图像分割模块可以实现图像目标分割功能,如图像边缘检测和区域分割等处理。在图像边缘检测处理中,可以选择Roberts、Sobel、Prewitt、Laplacian和Canny算子进行边缘检测。区域分割处理中可以采用直方图阈值分割、自适应阈值分割和区域增长的方法,其中直方图阈值分割的阈值可以通过弹出对话框进行参数选择。除了上述功能外,此模块还可以完成边界跟踪、Hough直线检测等功能。边界跟踪模块可以实现对白色背景的二值图像中黑色目标的边界跟踪,对轮廓进行提取。Hough直线检测根据Hough变换点-线对偶性原理,利用OpenCV中Hough线变换函数,可实现标准Hough变换和累计统计概率Hough变换,将检测出的直线进行标注。

图5为图像边缘检测和直线检测示意图,其中左上图为原始图像,右上图为利用Roberts算子进行的边缘检测结果图,左下图为利用Canny算子进行的边缘检测结果图,右下图为利用Hough变换检测直线的结果图,检测出的直线标注成红色。

2.2.5 数学形态学

数学形态学模块可以对图像进行腐蚀、膨胀、开运算、闭运算,这四个运算是数学形态学的四个基本运算。数学形态学的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的[1]。利用这些运算并结合图像分割模块可以实现图像的边缘检测与分割、特征提取、图像形状识别与修改等处理。此外,该模块还包含击中击不中和细化处理,利用击中击不中变换可以进行目标检测与定位。

图6为一个利用数学形态学进行膨胀的示意图。首先读入原始图像(左侧图像),然后对其进行二值化处理(中间图像),最后对二值化处理后的图像进行膨胀处理(右侧图像)。

图5 图像边缘检测及直线检测示意图

图6 数学形态学膨胀处理示意图

3 结束语

本文所介绍的数字图像处理课程教学辅助软件可以实现对图像的文件操作、图像变换、图像增强与复原、图像分割和数学形态学功能。本软件的开发可有效地展示数字图像处理课程中各种基本算法的实现过程和处理结果,有利于加深学生对该课程理论知识和实现技术的理解与掌握,能够提高该课程的教学效果。

参考文献:

[1]陈胜勇,刘胜等.基于opencv的计算机视觉技术实现[M].北京:科学出版社,2008.

[2]印月.基于VC++6.0的数字图像处理综合性设计实验[J].实验科学与技术,2011,Vol.9(3):10-11.

[3]黎宁,徐晓波,牛征.MATLAB平台下图像处理实验教学软件的实现[J].电气电子教学学报,2001,Vol.23(5):55-58.

[4]张华,展晓凯.基于VC++的数字图像处理系统的设计与实现[J].潍坊学院学报,2011,Vol.11(2):15-21.

[5]秦志远,张占睦,莫华.计算机图像处理可视化软件设计与实现[J].测绘学院学报,2001,Vol.18(1):33-35.

数字信号处理(DSP)课程设计报告 篇4

华中科技大学机械科学与工程学院 《数字电路与单片机原理》课程设计报告

(在此输入项目设计题目)

姓名:学号:专业/班级:指导老师:

小组成员、分工及签名:

说明

组织形式

每个小组3-5人,每组选择一个题目,每人独立承担一部分设计内容,分工合作,共同完成课程设计任务。设计任务

每个小组完成电路设计与制作、程序设计、软硬件调试及演示工作。答辩及演示

 以小组为单位进行课程设计答辩。要求介绍设计原理,分析计算过程,并

演示设计成果。 各小组答辩时间共计15分钟,其中,演讲8分钟,演示2分钟,回答问

题5分钟。成果提交

 实物及打印材料(答辩时提交)

每个小组需提交一份电路板实物;每人需提交一份独立完成的课程设计报告(A4纸打印,以软件开发为主要设计任务的学生需要提交完整的程序清单)。 电子版材料(以小组为单位打包压缩后,答辩时提交)

每个小组完成并提交一份答辩材料(PPT文档)、实物照片、演示视频(并配音)。每人独立完成的课程设计报告(word文档,以软件开发为主要设计任务的还需提交程序清单电子版)。

注意事项

 由于多媒体教室计算机没有安装Protel等软件,为方便答辩时讲解,请将电路原理图粘贴到PPT文档和Word文档中,重点部分局部放大后再粘贴,确保电路图及标注清晰。 为节省答辩时间,每个小组提前准备好电子文档并考入U盘的同一个文

件夹中(以“班级+小组编号”为文件夹名)。文件夹中包括:小组每个成员提交的课程设计Word报告(以学生姓名作为文件名)、小组答辩PPT电子文档、程序、演示视频。

(在此输入项目设计题目)

(专业、班级、学号、姓名)

摘要:(100-200字)

(以下为课程设计说明书参考结构,请每人根据具体完成的课程设计任务进行适当的增减、修改。)

1.课程设计任务概述

1.1 课程设计任务描述(或定义)1.2拟达到的设计目标

1.3拟采用的技术手段、方法

2.系统功能、技术指标分析

2.1系统功能划分与定义 2.2主要技术指标分析

3.系统方案设计与主要参数计算

3.1系统总体方案设计、系统原理框图

3.2系统主要模块工作原理、各模块间的关系 3.3主要参数计算

3.4主要器件选型及其主要参数

图1 H-桥驱动电路原理图

4.算法及软件开发

4.1算法分析与选择 4.2软件框图

5.系统调试、实验及结果分析 5.结束语

课程设计总结、感言、思考、建议等

参考文献

1.胡乾斌等编,单片微型计算机原理与应用(第二版),武汉,华中科技大学出版社,2006

年。

2.槐创锋、李振军、张克涛编著,Protel 99 SE电路设计基础与典型范例,北京,电子

工业出版社, 2008

数字电子时钟课程设计报告-2 篇5

20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间。尤其在医院,每次护士都会给病人作皮试,测试病人是否对药物过敏。注射后,一般等待5分钟,一旦超时,所作的皮试试验就会无效。手表当然是一个好的选择,但是,随着接受皮试的人数增加,到底是哪个人的皮试到时间却难以判断。所以,要制作一个定时系统。随时提醒这些容易忘记时间的人。

钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

论文的研究内容和结构安排

本系统采用石英晶体振荡器、分频器、计数器、显示器和校时电路组成。由LED数码管来显示译码器所输出的信号。采用了74LS系列中小规模集成芯片。使用了RS触发器的校时电路。总体方案设计由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。论文安排如下:

1、绪论 阐述研究电子钟所具有的现实意义。

2、设计内容及设计方案 论述电子钟的具体设计方案及设计要求。

3、单元电路设计、原理及器件选择 说明电子钟的设计原理以及器件的选择,主要从石英晶体振荡器、分频器、计数器、显示器和校时电路五个方面进行说明。

4、绘制整机原理图 该系统的设计、安装、调试工作全部完成。

(一)设计内容要求

1、设计一个有“时”、“分”、“秒”(23小时59分59秒)显示且有校时功能的电子钟。

2、用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试。

3、画出框图和逻辑电路图。4、功能扩展:(1)闹钟系统

(2)整点报时。在59分51秒、53秒、55秒、57秒输出750Hz音频信号,在59分59秒时,输出1000Hz信号,音像持续1秒,在1000Hz音像结束时刻为整点。(3)日历系统。

(二)设计方案及工作原理

数字电子钟的逻辑框图如图1所示。它由石英晶体振荡器、分频器、计数器、译码器显示器和校时电路组成。振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。计数器的输出分别经译码器送显示器显示。计时出现误差时,可以用校时电路校时、校分。

三、单元电路设计 1.秒脉冲产生电路(1)1KHZ 振荡器

振荡器由 555 定时器组成。图 3‐1 中是 由 555 定时器构成的 1KHZ 的自

激振荡器 ,其原理是

0.7(2R3+R4+R5)C4=1ms f=1/t=1KHZ。

2、计数器

秒脉冲信号经过6级计数器,分别得到“秒”个位、十位,“分”个位、十位以及“时”个位、十位的计时。“秒”、“分”计数器为60进制,小时为24进制。1、60进制计数器

(1)计数器按触发方式分类

计数器是一种累计时钟脉冲数的逻辑部件。计数器不仅用于时钟脉冲计数,还用于定时、分频、产生节拍脉冲以及数字运算等。计数器是应用最广泛的逻辑部件之一。按触发方式,把计数器分成同步计数器和异步计数器两种。对于同步计数器,输入时钟脉冲时触发器的翻转是同时进行的,而异步计数器中的触发器的翻转则不是同时。

(2)60进制计数器的工作原理

“秒”计数器电路与“分”计数器电路都是60进制,它由一级10进制计数器和一级6进制计数器连接构成,如图4所示,采用两片中规模集成电路74LS90串接起来构成的“

”、分

器。

IC1是十进制计数器,QD1作为十进制的进位信号,74LS90计数器是十进制异步计数器,用反馈归零方法实现十进制计数,IC2和与非门组成六进制计数。74LS90是在CP信号的下降沿翻转计数,Q A1和 Q C2相与0101的下降沿,作为“分”(“时”)计数器的输入信号,通过与非门和非门对下一级计数器送出一个高电平1(在此之前输出的一直是低电平0)。Q B2 和Q C2计数到0110,产生的高电平1分别送到计数器的清零R0(1),R0(2),74LS90内部的R0(1)和R0(2)与非后清零而使计数器归零,此时传给下一级计数器的输入信号又变为低电平0,从而给下一级计数器提供了一个下降沿,使下一级计数器翻转计数,在这里IC2完成了六进制计数。由此可见IC1和 IC2串联实现了六十进制计数。其中:74LS90——可二/五分频十进制计数器 74LS04——非门 74LS00——二输入与非门 2、24进制计数器

小时计数电路是由IC5和IC6组成的24进制计数电路,如图5所示。当“时”个位IC5计数输入端CP5来到第10个触发信号时,IC5计数器自动清零,进位端QD5向IC6“时”十位计数器输出进位信号,当第24个“时”(来自“分”计数器输出的进位信号)脉冲到达时,IC5计数器的状态为“0100”,IC6计数器的状态为“0010”,此时“时”个位计数器的QC5和“时”十位计数器的QB6输出为“1”。把它们分别送到IC5和IC6计数器的清零端R0(1)和R0(2),通过7490内部的R0(1)和R0(2)与非后清零,从而完成24进制计数。

3.组合的数字时钟

数字时钟系统的组成利用上面的六十进制和二十四进制递增计数器子电路 构成的数字钟系统

4、校时电路的实现原理 当电子钟接通电源或者计时发现误差时,均需要校正时间。校时电路分别实现对时、分的校准,由于4个机械开关具有震颤现象,因此用RS触发器作为去抖动电路。采用RS基本触发器及单刀双掷开关,闸刀常闭于2点,每搬动一次产生一个计数脉冲,实现校时功能

5.整点报时电路

电路应在整点前 10 秒钟内开始整点报时,即当时间在 59 分 50 秒到 59 分59 秒期间时,报时电路报时控制信号。

当时间在 59 分 59 秒到 00分 00 秒期间时,分十位、分个位和秒十位均保持不变,分别为 5、9 和 5,因此可将分计数器十位的 Qc 和 Qa、个位的 Qd 和 Qa及秒计数器十位的 Qc 和 Qa 相与,从而产生报时控制信号。报时电路可选7个74F08D 来构成

6、电路复位

四、译码与显示电路

1、显示器原理(数码管)

数码管是数码显示器的俗称。常用的数码显示器有半导体数码管,荧光数码管,辉光数码管和液晶显示器等。

本设计所选用的是半导体数码管,是用发光二极管(简称LED)组成的字形来显示数字,七个条形发光二极管排列成七段组合字形,便构成了半导体数码管。半导体数码管有共阳极和共阴极两种类型。共阳极数码管的七个发光二极管的阳极接在一起,而七个阴极则是独立的。共阴极数码管与共阳极数码管相反,七个发光二极管的阴极接在一起,而阳极是独立的。

当共阳极数码管的某一阴极接低电平时,相应的二极管发光,可根据字形使某几段二极管发光,所以共阳极数码管需要输出低电平有效的译码器去驱动。共阴极数码管则需输出高电平有效的译码器去驱动。

2、译码器原理(74LS47)

译码为编码的逆过程。它将编码时赋予代码的含义“翻译”过来。实现译码的逻辑电路成为译码器。译码器输出与输入代码有唯一的对应关系。74LS47是输出低电平有效的七段字形译码器,它在这里与数码管配合使用,表2列出了74LS47的真值表,表示出了它与数码管之间的关系。

四、详细设计与调试

4.1 秒脉冲的产生

秒脉冲发生器

脉冲发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体振荡器产生标准频率信号经过整形、分频获得1Hz的秒脉冲。石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。如晶32768 Hz,通过15次二分频后可获得1Hz的脉冲输出。

4.2 秒计数、译码及显示部分的设计

秒计数译码电路

秒计数器为M=60的计数器,即显示00~59,采用中规模集成电路双十进制计数器至少需要2片,因为10 < M < 100。它的个位为十进制,十位为六进制。本电路采用两片74LS161实现。当个位计数至1010时,通过 74LS00 二输入与非门连至清零端达到清零,当达到0000时,产生上升脉冲送给十位。十位计数至0110时清零。调试

六.总结

数字信号处理(DSP)课程设计报告 篇6

三 和DSP数字信号处理器有关的一些数学知识

自然界存在的信号一般是连续的,并可被连续变化的电压信号所表示。科里奥利流量计的信号也是连续信号,当我们通过一个模拟―数字转换器来发送信号时,事实上我们已把信号量化为离散的或数字化的样本。例如,假设我们通过一个12位的ADC以每秒1000个样本的采样率来传送转换器的电压,每毫秒我们将信号量化为212=4096个可能的级别之一。图2显示了一个已被量化后的信号。

600)this.width=600” border=0>

ADC运行一秒我们可采集1000个转换器电压的样本,我们称样本的数目为N。如果需要,我们可把所有的采样值加在一起,然后除以N来计算转换器电压的平均值。以一个类似的形式我们可计算信号的标准偏差,平均值代表我们想测量的实际信号,而标准偏差代表噪声信号。平均值的平方除以标准偏差的平方被称作信噪比或SNR。信噪比越高,被分析的数据的质量就越高。这些计算可用于计算被测变量的值。过滤和减小带宽(技术上叫作十倍程下降率)可用于提高信噪比和质量流量的精确度。

四 傅立叶分析

傅立叶分析是以法国数学家和物理学家 Jean Baptiste Loseph Fourier的名字命名的分析方法。

傅立叶认为任何连续的周期信号可被适当选择的正弦信号波的总和所描述。取一个连续的周期信号并把它转换为一族正弦波被定义为进行一个傅立叶变换。傅立叶变换在数学上很复杂,但我们只需大致了解即可。核心处理器取已量化的转换器信号并进行了信号的傅立叶变换,如图3所示。

600)this.width=600“ border=0>

五 数字滤波

图3中信号的频谱,只有一个信号数据,其余的都是噪声,100Hz的信号代表了测量管的振动频率。我们也看到了在200Hz、300Hz、400Hz等频率处的信号,这些被称为二次、三次和四次谐波。我们还看到了一个来源于动力线耦合的60Hz的小信号。

这些数据在DSP的存储器里只是一个表格,我们想做的是抛弃任何实际测量中所不需要的信息,也就是要忽略掉100Hz测量管频率之外的信息,这被称为数字滤波。

注意到在图3中只有一个信号在100Hz测量管频率附近,在较老的传感器中,通常确定信号附近什么是数据和什么是噪声都是非常困难的。高准传感器在测量管工作频率附近有一个格外高的信号纯度,这就是高准质量流量计具有高精确度的一个重要原因。

六 DSP数字信号处理技术对高准质量流量计的实际意义

与使用时间常量去阻抑和稳定信号相比,使用DSP数字信号处理技术的主要好处之一是能够以一个被提高了的采样率去过滤实时信号,这使得流量计对流量的阶跃变化的`响应时间快多了。使用MVD多参数数字变送器的响应时间比使用模拟信号处理的传统变送器快2~4倍,更快的响应时间会提高短批量控制的效率和精确度。在发动机测试装置里,我们能更好地测量发动机对燃料喷射的阶跃变化的响应。用一个紧凑的校验装置还能提高现场校验高准流量计的能力。图4是MVD多参数数字科里奥利变送器、压力变送器和普通科里奥利变送器对流量的阶跃变化的响应。

600)this.width=600” border=0>

DSP数字信号处理技术另一个颇有价值的实例是气体测量。气体测量是一个更富有挑战性的应用,因为高速气体通过流量计会引起相对较严重的噪声。通过高准Elite系列传感器,与流量信号混杂的噪声已被减至最小。现在DSP数字信号处理技术能更好地滤波,并进一步减小了质量流量计对噪声的敏感度。采用MVD多参数数字变送器测量气体的结果在重复性和精确度上都有了显著提高,效果如图5、图6所示。

600)this.width=600“ border=0>

600)this.width=600” border=0>

七 未来

DSP数字信号处理技术提供了一个“通往处理的窗户”,今天,当浏览这个窗户时,首先集中在测量管振动频率附近的信号上。实际上,有意地抛弃了其余的信息,很可能正是隐藏在这些“无用的”数据里的信息会铺平通往新的诊断技术的道路。例如,频谱分析可能会引导我们取得在夹杂空气或团状流动流体测量上的进展,流体在测量管内壁的附着也是另一个有希望被DSP数字信号处理技术检测到的故障,频谱的变化也很可能被用于预测传感器的故障。

八 总结

数字信号处理(DSP)课程设计报告 篇7

关键词电力远动系统;智能节点;DSP技术

中图分类号TM文献标识码A文章编号1673-9671-(2011)081-0101-01

1概述

电力系统智能节点是完成运动数据采集、处理、发送、接收以及输出执行等功能的设备。

它具备了传统RTU的所有功能。各RTU系统之间由计算机网络连接,它们之间的数据交换由网络厂商提供的网络通讯协议完成;除了具备面向对象的I/O系统的一般功能外,最重要的特点就在于每一个系统从通讯网络的角度而言,它均为一个网络“节点”,即电力系统智能节点。

2DSP芯片的选择

本设计选择TMS320LF2407A作为本设计的DSP芯片,C240x系列DSP是面向数字控制系统的新一代数字信号处理器。该控制器集实时处理能力和控制器设计功能于一身,为控制系统应用提供了一个理想的解决方案。其内部的哈佛结构使数据空间和程序空间分离,独立的数据总线和程序总线允许程序数据同时操作;专用的硬件乘法器极大提高了运算速度;具有独特的逆寻址方式,能高效地进行快速傅里叶变换运算;指令系统采用流水线操作,减小了指令周期;采用内存映射方式管理I/O,能灵活方便地扩充外围电路。

3电源电路

TMS320LF2407A(以下简称2407A)采用3.3V电压,减小了芯片功耗;但常用直流电源为5V,因此必须考虑电平转换问题。一种方法是直接采用可调直流电源获得3.3V电压,但这样很难保证电源电压的稳定性,影响DSP的正常运行。另一种方法是采用专门的电源芯片,将5 V电压降为3.3V。TPS7333、TPS76HD318、MAX604为常用的电平转换芯片。基于本系统外围供电为5V,但DSP芯片需要的是3.3V的电压,故选择输入电压为5V,输出为3.3V的TPS7333作为电源芯片。

4智能节点的时钟电路

外部时钟信号由晶体振荡器提供,而晶体振荡器分为有源和无源,通过无源晶体连接的振荡器价格便宜,但是它的驱动能力比较差,一般不能提供多个器件共享,而且它可以提供的频率范围也比较小(一般在20kHz~60MHz)。所以,本设计采用了一个有源晶体振荡器,但是,使用有源晶振要注意时钟信号的电平,一般市场的晶振输出信号电平为5V或者3.3V。由于,DSP外围电压是3.3V,所以,本设计采用的是低电压型号(3.3V供电)的有源晶体振荡器15MOSC,这避免了对其输出进行电平转换。

5复位电路

本设计选用TL7705A作为复位电路的核心芯片,TL7705是电源监控用集成电路,采用8脚双列直插式封装,其具有处理上电复位、欠电压检测复位、手动复位功能.本文用它来实现外部复位信号管理功能,其复位信号输出引脚与DSP的复位引脚相连。其内部基准电压发生器具有较高的温度稳定性,可由1脚输出2.5V基准电压。为了吸收电源的纹波和脉冲干扰,通常在1脚接上0.1μF的滤波电容来提高其抗干扰能力。被监视的电源电压由SENSE脚引入,当其值小于基准电压时,输出脚RESET和RESET反分别为高、低电平。当被监视的电源电压高于基准电压时,端子RESET和RESET反输出关断,它能诊断电源瞬间短路、降压、尖峰脉冲干扰,并产生复位信号,外围电路的电压下降到门限设定电压时,完成数据保护,即将需要保护的数据写入DSP的内部RAM中,并使DSP进入掉电工作方式。

6JTAG电路

为了方便系统的调试和升级,电路设计时必须留出JTAG(连接测试组)调试接口,以便对DSP模块进行仿真和调试。JTAG接口用于连接最小系统和仿真器,实现仿真器对DSP的访问,JTAG接口的连接需要和仿真器上的接口一致。JTAG仿真器比较便宜,而且连接方便。标准的JTAG接口是4線:TCK为测试时钟输入;TDI为测试数据输入,数据通过TDI引脚输入JTAG接口;TDO为测试数据输出,数据通过TDO引脚从JTAG接口输出;TMS为测试模块选择,用来设置JTAG接口处于某种特定的测试模式;TRST为测试复位,输入引脚,低电平有效。

7存储器外围扩展电路

在设计TMS320LF2407A电路的时候,一般都会设计存储器外围扩展电路。外扩存储器不仅可以方便程序调试,而且也便于系统升级。2407ADSP可以访问的程序存储空间为64K字,根据MP/MC引脚的电子决定其配置方式。当MP/MC为低电平时,片内Flash存储空间使能,地址范围是0000h~7FFFFh,8000h~FFFFh的地址留给外部程序存储器。当

MP/MC为高电平时,片内Flash被禁止,64K字存储空间全部位于外部程序存储器中,即只能从片外存储器中读取数据,使得仿真调试时通过仿真器对程序修改比较容易。2407A DSP有64K的16位数据存储器空间,

32K字的内部存储器地址范围是0000h~7FFFh,包括存储器映射寄存器、DARAM和外设映射寄存器。另外,地址范围是8000h~FFFPh的32K字留给外部数据存储器空间。片外存储器的选择主要考虑电压、容量、速度等指标。本文采用工作电压3.3V,容量64K×16位,访问时间15ns的高速静态RAM,IS6lLV6416作为片外存储器。片外存储器的数据、地址线分别与DSP对应相连;输出使能引脚OE和输入使能引脚WE分别与DSP的读选通DSPRD相连。仿真调试时,用跳线把片选引脚DSPWE与DSP的程序空间选通引脚CE相连,当外部程序存储器用。程序烧写到片内Flash后,把片选引脚CE与DSP的数据空间选通引脚DSPDS相连,当外部数据存储器用。

8结论

本文完成了基于DSP电力系统自动化智能节点的硬件电路设计和软件设计。以TMS320LF2407A芯片作为核心处理器,通过对DSP信号处理电路、数据采集电路和数据通信电路的设计,实现了现场信号的采集、数字信号在CAN总线上的传输、对现场控制装置的控制以及管理。

参考文献

[1]张雄伟,等.DSP芯片原理与应用[M].北京:机械工业出版社,2005.

[2]扈宏杰.DSP控制系统的设计与实现[M].北京:机械工业出版社,2004.

[3]柳永智,等.电力系统远动[M].北京:中国电力出版社,2002.

车站信号课程设计报告 篇8

本次课程设计内容是使用CAD软件绘制给出6#站信号平面布置图并根据平面布置图编制该车站的联锁表,同时根据所绘图纸写出课程设计报告,对所绘信号平面布置图和编制的联锁表进行说明。设计图纸说明

3.1 车站信号设备平面图的绘制

车站信号平面布置图中各种信号机的布置和命名以及道岔的编号要按照其相应的原则来进行设计,同时还要注意整个车站内道岔,进路和信号机之间的联锁关系,如果联锁关系有错误就会导致信号平面布置出现错误。

该站共有4个股道,两条正线股道用罗马数字命名,分别为IG、IIG;2条侧线股道,用阿拉伯数字命名,分别为3G、4G;该站上行咽喉共有4组道岔,上行咽喉道岔以偶数命名,其中,2/

4、6/8为双动道岔,10、12为单动道岔。

该站共有24架信号机,其中,4架出站信号机,均可列调共用,当反向发车时,表示器右边白灯点亮;2架进站信号机,其中一架为上行正向进站信号机S;一架为反向进站信号机SF,设置在列车行驶右侧;4架专设单置调车信号机。股道有效长度为站内两架出站信号机之间的有效距离,以两架出站信号机绝缘节为分界点。本设计只绘制其上行咽喉(附图CZKS-01)。

3.2 联锁表的编制

车站信号平面布置图是编制联锁表的依据。附图CZKS-02是根据6#站信号平面布置图编制的上行咽喉的联锁表。在编制联锁表时,是以进路为主体,从列车进路(分接车和发车)到调车进路逐条依次顺序编号的。然后将排列进路时需要按下的按钮、防护该进路的信号机名称和显示、进路所要求的有关道岔的位置、进站应包括的轨道区段以及所排进路相敌对的信号等逐项一一填写。

方向栏分为列车进路和调车进路。对列车进路又分列车接车和列车发车,而对调车进路只需填相对应的调车进路始端信号机的名称。

对列车进路此栏只需填写进路终端所属的轨道名称,对调车进路,填写对应的终端信号机的名称。进路栏的写法如下,列车进路:列车接至x股道时,应写作“至x股道”;列车由x股道发车时,应写作“由x股道”;通过进路应写作“经x股道向xx方面通过”;调车进路:由Dx信号机调车时,应写作“由Dx”;调车至某一顺向调车调车信号机时,应写作“至Dx”;调车至x股道时,应写作“至x股道”。

进路方式栏,当列车进路的同一始端和同一终端间存在两条或两条以上进路方式时,除列出基本进路外,还应列出一条主要变通进路作为第二种进路方式。一般把对平行作业影响小,走行距离比较短,经过道岔比较少的进路定为基本进路。在进路方式栏内用“1”表示基本进路,“2”表示变通进路,而对调车则只填基本进路。

排列进路按下按钮栏,对基本进路应按顺序写出始端按钮和终端按钮,如排列S至3股道,只要分别填SLA、X3LA就可。对变通进路写出始端按钮,变更按钮和终端按钮。其中,充当列车变更的按钮有以下几种类型:除变更按钮BA可排列变更进路外,不论并置,差置,单置均可作列车变更按钮使用。充当调车变更按钮有以下两种情况:一种是专设的BA,另一种是一种特殊情况,单置信号机的进路按钮可作反方向的调车进路的变更按钮使用。

确定运行方向道岔栏,如有两种以上运行方式时,填写区别开通进路中起关键作用的对向道岔位置。

信号机栏中名称栏,填写进路始端信号机的名称。显示栏,分列车接车、列车发车和调车。列车接车填显示黄灯的符号(U、UU),亮U灯,列车进入本站正线停车,例如附图CZKS-01中S至Ⅱ股道接车;亮UU灯,列车进入本站侧(站)线停车,例如附图CZKS-01中S至3股道接车。列车发车填显示绿灯的符号(L),如附图CZKS-01中由Ⅰ股道发车。调车则统一填显示白灯的符号(B),如附图CZKS-01中由D6至3股道调车。

表示器栏中表示器用以表示某些与行车有关设备的位置和状态,或表示信号显示的某些附加意义,它和信号机的不同是,它没有防护(进路和区间等)意义。

道岔栏中顺序填写所排进路中的全部道岔以及有关防护和带动道岔的编号的位置。对于进路内的道岔,用道岔号码外加小括号“()”表示进路要求该道岔处于反位位置,不加括号则表示要求该道岔处于定位位置。在联锁表中用“{}”表示带动道岔。对于防护道岔,在道岔外加“[ ]”。

敌对信号栏中凡是位于敌对进路的信号,不能同时开放。为此,把敌对信号机名称填写在敌对信号栏中。填写的时候还应该注意区分无条件敌对和有条件敌对。只要进路一旦建立,某一信号机就不允许开放,这就是无条件敌对,例如S至Ⅱ股道进路一旦建立,XⅡ就不允许开放,是无条件敌对。只要有关道岔处于一定的位置才能构成敌对关系,否则就不构成敌对关系,是有条件敌对。

轨道区段栏中填写列车驶过所排进路时经过的所有道岔区段。以排列XⅠ至SF发车为例,列车将先后经过6-10DG和4DG,依次把这些道岔区段填入此栏就行。还应注意超限绝缘节的检查。

迎面进路栏中由车站两端向同一股道办理列车进路或调车进路所构成的迎面敌对关系,则按列车和调车分别填入相应栏内如乌鲁木齐向3股道接车与迎面的列车、调车是敌对的,则在迎面进路栏中列车栏和调车栏都填写3G。

其他联锁栏中单线半自动闭塞区段只有在办理完闭塞手续取得发车权后才能开放出站信号机;自动闭塞区段的出站信号机的开放也要检查离去区段的条件,在联锁表中统一用“闭塞”来表示。因此,在发车进路的“其他联锁”栏内要填写“BS”字样;反向发车时统一用“允许改方”来表示,在反向发车进路的“其他联锁”栏内要填写“YSGF”字样。总结

经过这次课程设计,我受益匪浅,在绘制6#站上行咽喉的信号平面布置图和连锁表的过程中,让我更深入地了解了CAD这个软件的功能与使用方法,在编制联锁表的时候更是让我学到了很多,将以前不会的表示灯的含义和敌对信号通过朱老师的指导掌握了许多,为以后毕业设计打下基础,并且对运营基础、车站信号等课程得到了实践。

我认为,在这次的课程设计中,在收获知识的同时,还收获了阅历,收获了成熟,在此过程中,我们通过查找大量资料,请教老师,以及不懈的努力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在具体实施过程中,我们学会了很多学习、实践的方法。附图

函数信号发生器课程设计报告. 篇9

利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。经测试,所设计波形发生电路产生的波形与要求大致相符。

关键词:波形发生器;集成运放;RC 充放电回路;滞回比较器;积分电路 目录

中文摘要..........................................................错误!未定义书签。1.系统设计........................................................................................4

1.1设计指标................................................................................................................................4 1.2方案论证与比较....................................................................................................................4 2.单元电路设计................................................................................5 2.1方波的设计............................................................................................................................5 2.2三角波的设计........................................................................................................................8 2.3正弦波的设计........................................................................................................................8 3.参数选择....................................................................................11 3.1方波电路的元件参数选择...................................................................................................11 4.系统测试......................................................................................11 4.1正弦波波形测试..................................................................................................................11 4.2方波波形测试......................................................................................................................11 4.3三角波波形测试..................................................................................................................12 5.结果分析....................................................................................12

6.工作总结....................................................................................12 7.参考文献....................................................................................13 8.附录............................................................................................13 1.系统设计 1.1设计指标 1.1.1 电源特性参数 ①输入:双电源 12V ②输出:正弦波V pp >1V,方波V pp ≈12 V,三角波V pp ≈5V,幅度连续可调,线性失真小。

1.1.2工作频率

工作频率范围:10 HZ~100HZ ,100 HZ~1000HZ 1.2方案论证与比较

1.2.1 方案1:采用集成运放电路设计方案产生要求的波形

主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波, 并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。

1.2.2 方案2:采用集成运放电路设计方案产生要求的波形

主要是应用集成运放LM324, 其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波, 方波经过积分之后可以形成三角波, 三角波再经过低

通滤波可以形成正弦波, 此电路方案能实现基本要求和扩展总分的功能, 电路较简单, 调试方便, 相比第一方案, 其操作成功率较低.2.单元电路设计 2.1方波的设计 2.1.1原理图

2.1.2工作原理

矩形波发生电压只有两种状态, 不是高电平, 就是低电平, 所以电压比较器是它的重要成分;因为产生振荡, 就是要求输出的两种状态自动地相互转换, 所以电路中必须引入反馈, 因为输出状态应按一定时间间隔交替变化, 即产生周期性变化, 所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路, 它由反相输入的滞回比较器和RC 电路组成.RC 回路既作为延迟环节, 又作为反馈网络, 通过RC 充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。Uo 通过R3对电容C 正向充电,反相输入端电位随时间t 增长而逐渐升高,当t 趋近于无穷时,Un 趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo 就从+Uz跃变为—Uz,与此同时Up 从+Ut跃变为—Ut。随后,Uo 又通过R3对电容C 反向充电,或者说放电。反相输入端电位Un 随时间t 增长而逐渐降低,当t 趋于无穷时,Un 趋于—Uz ;但是,一旦Un=—Ut, 再稍减小,Uo 就从—Uz 跃变为+Uz,与此同时Up 从—Ut 跃变为+Ut,电容又开始正向充电。上述过程周而复始,电路产生了自激振荡。

图2.3滞回比较器的电压传输特性

2.2.2工作原理

积分电路是一种运用较为广泛的模拟信号运算电路,它是组成各种模拟电子电路的重要基本单元,它不仅可以实现对微分方程的模拟,同时在控制和测量

2.6方波-三角波发生电路波形图系统中,积分电路也有着广泛运用,利用其充放电过

程可以实现延时,定时以及各种波形的产生.积分电路还可用于延时和定时。在图2.3所示三角波发生电路图中,将方波电压作为积分运算电路的输入,在积分运算电路的输出就得到三角波电压。.U O 3=-⎰ I C 1 =-U O 2dt C RC ⎰(式2.10

U O 3=-1 U O 2(t 1-t 0+U O 2(t 0(R 4+R W C(式2.11 式中 U O 2(t 0 为初始状态时的输出电压。设初始状态时U O 2正好从-U Z 跃变为 +U Z,则式2.10应写成 U O 3=-1 U Z(t 1-t 0+U O 2(t 0(R 4+R W C(式2.12 积分电路反向积分, U O 2随时间的增长线性下降,根据图2.4所示电压传输特性,一旦U O 2=U T-,再稍减小,U O 2将从+U Z 跃变为-U Z。使得式2.10变为

U O 3=-1 U Z(t 2-t 1+U O 2(t 1(R 4+R W C(式2.13 为 U O 2(t 1

U O 2 产生跃变时的输出电压。积分电路正向积分,U O 2 随时间的增

长线性增大,根据图2.3的电压传输特性,一旦U O 2=U T +,再稍增大, U O 2将从-U Z 跃变为+U Z,回到初态,积分电路又开始反向积分。

2.3正弦波的设计

2.3.1工作原理

采用低通滤波的方法将三角波变换为正弦波。图中采用的是简单的二阶低通滤波电路,与同相输入端电路类似,增加RC 环节,可以使滤波器的过渡带变窄,衰减斜率的值加大,电路如图所示。

输出三角波。三角波再经R10、C1积分网络,输出近似的正弦波。总的原理图

4C 3.参数选择

3.1方波电路的元件参数选择 3.2.1 稳压管

由于要求方波输出电压约等于12V,所以采用的稳压管的稳压约等于6V,所以应采用6.2V 的稳压管两支。

电容

库房里可以提供0.1uF 的电容,所以电路里都采用0.1uF 的电容,电阻

频率范围是10HZ ~100HZ ,100HZ~1000HZ, 根据公式f=R2/(4*R1*R3*C取 R1=2K R2=5K R3=100 RW1=5K Rw2=100K

经过公式计算后得到接近的电阻阻值,再把数据代入到仿真软件进行仿真调整,得到正确的波形图和数值。

4.系统测试 4.1方波波形测试

由于在电路图中方波的幅值约等于+12V,所以只要电路没有出现问题,阻值选择合适,那么波形就可以出来。

4.2三角波波形测试

同样保持电路完整,接入电源,通过调节RW1可改变三角波伏值及频率,通过调整RW2使电路的周期发生变化,同时频率也发生变化。

4.3正弦波波形测试

将电源电路接入变压器使双电源输出 12V,通过调节RW1、RW2可调节正弦波的峰峰值和频率。

5.结果分析

实验结果和预先所设定的参数存在一定的误差,其中跟元器件的选择参数有关,在电子仿真软件中的电阻参数在库房里没有相吻合的参数,其次在实验焊接过程中也可导致误差,库房所提供的电阻其本身误差较大,综合各方面的考虑,实验结果的误差不可避免,而制作出来的电路板所能出现的波形,在一定程度上会出现失真现象。

6.工作总结

在这次课程设计中,我学会了怎样去根据课题的要求去设计电路和调试电路。动手能力得到很大的提高。从中我发现自己并不能很好的熟练去使用我所学到的模电知识。在以后学习中我要加强对使用电路的设计和选用能力。但由于电路比较简

单、定型,而不是真实的生产、科研任务,所以我们基本上能有章可循,完成起来并不困难。把过去熟悉的定型分析、定量计算逐步,元器件选择等手段结合起来,掌握工程设计的步骤和方法,了解科学实验的程序和实施方法。这对今后从事技术工作无疑是个启蒙训练。通过这种综合训练,我们可以掌握电路设计的基本方法,提高动手组织实验的基本技能,培养分析解决电路问题的实际本领,为以后毕业设计和从事电子实验实际工作打下基础。

在实验过程中收益最大的就是懂得如何去调试电路,查找电路的缺陷和看PCB 图,通过自己动手更能对电路有更深刻的了解。

7.参考文献 元件清单表 附录1 器件清单

附录2 原理图

4C 附录3 电子仿真 3.1输出方波电路的仿真 图 输出方波电路的仿真 3.2方波—三角波电路的仿真

上一篇:【经验管理】商品混凝土试验室管理要点下一篇:快乐的五一日记90字