公司理财课后习题答案

2024-06-01

公司理财课后习题答案(精选4篇)

公司理财课后习题答案 篇1

1.鲁侍萍:可是她不是小姐,她也不贤惠,并且听说是不大规矩的。

(课文中鲁侍萍几次说到这样意思的话,表现了她怎样的心情?)

2.周朴园:(忽然)好!痛痛快快的!你现在要多少钱吧!

鲁侍萍:什么?

(鲁侍萍的反问,表现了她怎样的情感?)

3.周朴园:什么?鲁大海?他!我的儿子?

(这四个短句表达的意思,可以说成“鲁大海原来是我的儿子”,但表达的感情却不同。试做点分析。)

4.鲁侍萍:(大哭)这真是一群强盗!(走至周萍面前)你是萍,……凭──凭什么打我的儿子?

(第二句话巧妙在哪里?表现了侍萍什么复杂的感情?)

参考答案:

1.周朴园听出侍萍的无锡口音后,便问起往事,称当时的侍萍为“梅小姐”,说她“很贤惠,也很规矩”。鲁侍萍听到他的谎言,想起自己的遭遇,满怀悲愤,于是语带嘲讽地反复说“她不是小姐,她也不贤慧”,表现了她内心的痛苦和对周朴园的不满。

2.周朴园认为鲁侍萍来到这里就是为了敲诈他,因此他急于用钱把鲁侍萍打发走,以保证从此周、鲁两家再不会发生什么联系,他的这句问话暴露了他已习惯以现实功利思想考虑问题;侍萍的反问,既有因为人格受到侮辱的愤怒,又有对周朴园的失望和蔑视。

复变函数课后习题答案 篇2

1.求下列复数的实部、虚部、模、幅角主值及共轭复数:

(1)

(2)

(3)

(4)

解:(1),因此:,(2),因此,(3),因此,(4)

因此,2.

将下列复数化为三角表达式和指数表达式:

(1)

(2)

(3)

(4)

(5)

解:(1)

(2)

(3)

(4)

(5)

3.求下列各式的值:

(1)

(2)

(3)

(4)

(5)

(6)

解:(1)

(2)

(3)

(4)

(5)

(6)

4.设试用三角形式表示与

解:,所以,5.

解下列方程:

(1)

(2)

解:(1)

由此,(2),当时,对应的4个根分别为:

6.证明下列各题:(1)设则

证明:首先,显然有;

其次,因

固此有

从而。

(2)对任意复数有

证明:验证即可,首先左端,而右端,由此,左端=右端,即原式成立。

(3)若是实系数代数方程的一个根,那么也是它的一个根。

证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,由此得到:

由此说明:若为实系数代数方程的一个根,则也是。结论得证。

(4)若则皆有

证明:根据已知条件,有,因此:,证毕。

(5)若,则有

证明:,因为,所以,因而,即,结论得证。

7.设试写出使达到最大的的表达式,其中为正整数,为复数。

解:首先,由复数的三角不等式有,在上面两个不等式都取等号时达到最大,为此,需要取与同向且,即应为的单位化向量,由此,8.试用来表述使这三个点共线的条件。

解:要使三点共线,那么用向量表示时,与应平行,因而二者应同向或反向,即幅角应相差或的整数倍,再由复数的除法运算规则知应为或的整数倍,至此得到:

三个点共线的条件是为实数。

9.写出过两点的直线的复参数方程。

解:过两点的直线的实参数方程为:,因而,复参数方程为:

其中为实参数。

10.下列参数方程表示什么曲线?(其中为实参数)

(1)

(2)

(3)

解:只需化为实参数方程即可。

(1),因而表示直线

(2),因而表示椭圆

(3),因而表示双曲线

11.证明复平面上的圆周方程可表示为,其中为复常数,为实常数

证明:圆周的实方程可表示为:,代入,并注意到,由此,整理,得

记,则,由此得到,结论得证。

12.证明:幅角主值函数在原点及负实轴上不连续。

证明:首先,在原点无定义,因而不连续。

对于,由的定义不难看出,当由实轴上方趋于时,而当由实轴下方趋于时,由此说明不存在,因而在点不连续,即在负实轴上不连续,结论得证。

13.函数把平面上的曲线和分别映成平面中的什么曲线?

解:对于,其方程可表示为,代入映射函数中,得,因而映成的像曲线的方程为,消去参数,得

即表示一个圆周。

对于,其方程可表示为

代入映射函数中,得

因而映成的像曲线的方程为,消去参数,得,表示一半径为的圆周。

14.指出下列各题中点的轨迹或所表示的点集,并做图:

解:(1),说明动点到的距离为一常数,因而表示圆心为,半径为的圆周。

(2)是由到的距离大于或等于的点构成的集合,即圆心为半径为的圆周及圆周外部的点集。

(3)说明动点到两个固定点1和3的距离之和为一常数,因而表示一个椭圆。代入化为实方程得

(4)说明动点到和的距离相等,因而是和连线的垂直平分线,即轴。

(5),幅角为一常数,因而表示以为顶点的与轴正向夹角为的射线。

15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通。

(1),以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通

(2),顶点在原点,两条边的倾角分别为的角形区域,无界,单连通

(3),显然,并且原不等式等价于,说明到3的距离比到2的距离大,因此原不等式表示2与3

连线的垂直平分线即2.5左边部分除掉2后的点构成的集合,是一无界,多连通区域。

(4),显然该区域的边界为双曲线,化为实方程为,再注意到到2与到2的距离之差大于1,因而不等式表示的应为上述双曲线左边一支的左侧部分,是一无界单连通区域。

(5),代入,化为实不等式,得

所以表示圆心为半径为的圆周外部,是一无界多连通区域。

习题二答案

1.指出下列函数的解析区域和奇点,并求出可导点的导数。

(1)

(2)

(3)

(4)

解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数,商时分母不为0),根据和、差、积、商的导数公式及复合函数导数公式,再注意到区域上可导一定解析,由此得到:

(1)处处解析,(2)处处解析,(3)的奇点为,即,(4)的奇点为,2.

判别下列函数在何处可导,何处解析,并求出可导点的导数。

(1)

(2)

(3)

(4)

解:根据柯西—黎曼定理:

(1),四个一阶偏导数皆连续,因而处处可微,再由柯西—黎曼方程

解得:,因此,函数在点可导,函数处处不解析。

(2),四个一阶偏导数皆连续,因而处处可微,再由柯西—黎曼方程

解得:,因此,函数在直线上可导,因可导点集为直线,构不成区域,因而函数处处不解析。

(3),四个一阶偏导数皆连续,因而

处处可微,并且

处处满足柯西—黎曼方程

因此,函数处处可导,处处解析,且导数为

(4),,因函数的定义域为,故此,处处不满足柯西—黎曼方程,因而函数处处不可导,处处不解析。

3.当取何值时在复平面上处处解析?

解:,由柯西—黎曼方程得:

由(1)得,由(2)得,因而,最终有

4.证明:若解析,则有

证明:由柯西—黎曼方程知,左端

右端,证毕。

5.证明:若在区域D内解析,且满足下列条件之一,则在D内一定为常数。

(1)在D内解析,(2)在D内为常数,(3)在D内为常数,(4)

(5)

证明:关键证明的一阶偏导数皆为0!

(1),因其解析,故此由柯西—黎曼方程得

------------------------(1)

而由的解析性,又有

------------------------(2)

由(1)、(2)知,因此即

为常数

(2)设,那么由柯西—黎曼方程得,说明与无关,因而,从而为常数。

(3)由已知,为常数,等式两端分别对求偏导数,得

----------------------------(1)

因解析,所以又有

-------------------------(2)

求解方程组(1)、(2),得,说明

皆与无关,因而为常数,从而也为常数。

(4)同理,两端分别对求偏导数,得

再联立柯西—黎曼方程,仍有

(5)同前面一样,两端分别对求偏导数,得

考虑到柯西—黎曼方程,仍有,证毕。

6.计算下列各值(若是对数还需求出主值)

(1)

(2)

(3)

(4)

(5)

(6)

解:(1)

(2),为任意整数,主值为:

(3),为任意整数

主值为:

(4)

(5),为任意整数

(6),当分别取0,1,2时得到3个值:,7.

求和

解:,因此根据指数函数的定义,有,(为任意整数)

8.设,求

解:,因此

9.解下列方程:

(1)

(2)

(3)

(4)

解:(1)方程两端取对数得:

(为任意整数)

(2)根据对数与指数的关系,应有

(3)由三角函数公式(同实三角函数一样),方程可变形为

因此

即,为任意整数

(4)由双曲函数的定义得,解得,即,所以,为任意整数

10.证明罗比塔法则:若及在点解析,且,则,并由此求极限

证明:由商的极限运算法则及导数定义知,由此,11.

用对数计算公式直接验证:

(1)

(2)

解:记,则

(1)左端,右端,其中的为任意整数。

显然,左端所包含的元素比右端的要多(如左端在时的值为,而右端却取不到这一值),因此两端不相等。

(2)左端

右端

其中为任意整数,而

不难看出,对于左端任意的,右端取或时与其对应;反之,对于右端任意的,当为偶数时,左端可取于其对应,而当为奇数时,左端可取于其对应。综上所述,左右两个集合中的元素相互对应,即二者相等。

12.证明

证明:首先有,因此,第一式子证毕。

同理可证第二式子也成立。

13.证明

(即)

证明:首先,右端不等式得到证明。

其次,由复数的三角不等式又有,根据高等数学中的单调性方法可以证明时,因此接着上面的证明,有,左端不等式得到证明。

14.设,证明

证明:由复数的三角不等式,有,由已知,再主要到时单调增加,因此有,同理,证毕。

15.已知平面流场的复势为

(1)

(2)

(3)

试求流动的速度及流线和等势线方程。

解:只需注意,若记,则

流场的流速为,流线为,等势线为,因此,有

(1)

流速为,流线为,等势线为

(2)

流速为,流线为,等势线为

(3)

流速为,流线为,等势线为

习题三答案

1.计算积分,其中为从原点到的直线段

解:积分曲线的方程为,即,代入原积分表达式中,得

2.计算积分,其中为

(1)从0到1再到的折线

(2)从0到的直线

解:(1)从0到1的线段方程为:,从1到的线段方程为:,代入积分表达式中,得;

(2)从0到的直线段的方程为,代入积分表达式中,得,对上述积分应用分步积分法,得

3.积分,其中为

(1)沿从0到

(2)沿从0到

解:(1)积分曲线的方程为,代入原积分表达式中,得

(2)积分曲线的方程为,代入积分表达式中,得

4.计算积分,其中为

(1)从1到+1的直线段

(2)从1到+1的圆心在原点的上半圆周解:(1)的方程为,代入,得

(2)的方程为,代入,得

5.估计积分的模,其中为+1到-1的圆心在原点的上半圆周。

解:在上,=1,因而由积分估计式得的弧长

6.用积分估计式证明:若在整个复平面上有界,则正整数时

其中为圆心在原点半径为的正向圆周。

证明:记,则由积分估计式得,因,因此上式两端令取极限,由夹比定理,得,证毕。

7.通过分析被积函数的奇点分布情况说明下列积分为0的原因,其中积分曲线皆为。

(1)

(2)

(3)

(4)

(5)

解:各积分的被积函数的奇点为:(1),(2)

即,(3)

(4)为任意整数,(5)被积函数处处解析,无奇点

不难看出,上述奇点的模皆大于1,即皆在积分曲线之外,从而在积分曲线内被积函数解析,因此根据柯西基本定理,以上积分值都为0。

8.计算下列积分:

(1)

(2)

(3)

解:以上积分皆与路径无关,因此用求原函数的方法:

(1)

(2)

(3)

9.计算,其中为不经过的任一简单正向闭曲线。

解:被积函数的奇点为,根据其与的位置分四种情况讨论:

(1)皆在外,则在内被积函数解析,因而由柯西基本定理

(2)在内,在外,则在内解析,因而由柯西积分

公式:

(3)同理,当在内,在外时,(4)皆在内

此时,在内围绕分别做两条相互外离的小闭合曲线,则由复合闭路原理得:

注:此题若分解,则更简单!

10.计算下列各积分

解:(1),由柯西积分公式

(2),在积分曲线内被积函数只有一个奇点,故此同上题一样:

(3)

在积分曲线内被积函数有两个奇点,围绕分别做两条相互外离的小闭合曲线,则由复合闭路原理得:

(4),在积分曲线内被积函数只有一个奇点1,故此

(5),在积分曲线内被积函数有两个奇点,围绕分别做两条相互外离的小闭合曲线,则由复合闭路原理得:

(6)为正整数,由高阶导数公式

11.计算积分,其中为

(1)

(2)

(3)

解:(1)由柯西积分公式

(2)同理,由高阶导数公式

(3)由复合闭路原理,其中,为内分别围绕0,1且相互外离的小闭合曲线。

12.积分的值是什么?并由此证明

解:首先,由柯西基本定理,因为被积函数的奇点在积分曲线外。

其次,令,代入上述积分中,得

考察上述积分的被积函数的虚部,便得到,再由的周期性,得

即,证毕。

13.设都在简单闭曲线上及内解析,且在上,证明在内也有。

证明:由柯西积分公式,对于内任意点,由已知,在积分曲线上,故此有

再由的任意性知,在内恒有,证毕。

14.设在单连通区域内解析,且,证明

(1)

在内;

(2)

对于内任一简单闭曲线,皆有

证明:(1)显然,因为若在某点处则由已知,矛盾!

(也可直接证明:,因此,即,说明)

(3)

既然,再注意到解析,也解析,因此由函数的解析性法则知也在区域内解析,这样,根据柯西基本定理,对于内任一简单闭曲线,皆有,证毕。

15.求双曲线

(为常数)的正交(即垂直)曲线族。

解:为调和函数,因此只需求出其共轭调和函数,则

便是所要求的曲线族。为此,由柯西—黎曼方程,因此,再由

知,即为常数,因此,从而所求的正交曲线族为

(注:实际上,本题的答案也可观察出,因极易想到

解析)

16.设,求的值使得为调和函数。

解:由调和函数的定义,因此要使为某个区域内的调和函数,即在某区域内上述等式成立,必须,即。

17.已知,试确定解析函数

解:首先,等式两端分别对求偏导数,得

----------------------------------(1)

-------------------------------(2)

再联立上柯西—黎曼方程

------------------------------------------------------(3)

----------------------------------------------------(4)

从上述方程组中解出,得

这样,对积分,得再代入中,得

至此得到:由二者之和又可解出,因此,其中为任意实常数。

注:此题还有一种方法:由定理知

由此也可很方便的求出。

18.由下列各已知调和函数求解析函数

解:(1),由柯西—黎曼方程,对积分,得,再由得,因此,所以,因,说明时,由此求出,至此得到:,整理后可得:

(2),此类问题,除了上题采用的方法外,也可这样:,所以,其中为复常数。代入得,故此

(3)

同上题一样,因此,其中的为对数主值,为任意实常数。

(4),对积分,得

再由得,所以为常数,由知,时,由此确定出,至此得到:,整理后可得

19.设在上解析,且,证明

证明:由高阶导数公式及积分估计式,得,证毕。

20.若在闭圆盘上解析,且,试证明柯西不等式,并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数。

证明:由高阶导数公式及积分估计式,得,柯西不等式证毕;下证刘维尔定理:

因为函数有界,不妨设,那么由柯西不等式,对任意都有,又因处处解析,因此可任意大,这样,令,得,从而,即,再由的任意性知,因而为常数,证毕。

习题四答案

1.考察下列数列是否收敛,如果收敛,求出其极限.

(1)

解:因为不存在,所以不存在,由定理4.1知,数列不收敛.

(2)

解:,其中,则

因为,所以

由定义4.1知,数列收敛,极限为0.

(3)

解:因为,所以

由定义4.1知,数列收敛,极限为0.

(4)

解:设,则,因为,都不存在,所以不存在,由定理4.1知,数列不收敛.

2.下列级数是否收敛?是否绝对收敛?

(1)

解:,由正项级数的比值判别法知该级数收敛,故级数收敛,且为绝对收敛.

(2)

解:,因为是交错级数,根据交错级数的莱布尼兹审敛法知该级数收敛,同样可知,也收敛,故级数是收敛的.

又,因为发散,故级数发散,从而级数条件收敛.

(3)

解:,因级数发散,故发散.

(4)

解:,由正项正项级数比值判别法知该级数收敛,故级数收敛,且为绝对收敛.

3.试确定下列幂级数的收敛半径.

(1)

解:,故此幂级数的收敛半径.

(2)

解:,故此幂级数的收敛半径.

(3)

解:,故此幂级数的收敛半径.

(4)

解:令,则,故幂级数的收敛域为,即,从而幂级数的收敛域为,收敛半径为.

4.设级数收敛,而发散,证明的收敛半径为.

证明:在点处,因为收敛,所以收敛,故由阿贝尔定理知,时,收敛,且为绝对收敛,即收敛.

时,因为发散,根据正项级数的比较准则可知,发散,从而的收敛半径为1,由定理4.6,的收敛半径也为1.

5.如果级数在它的收敛圆的圆周上一点处绝对收敛,证明它在收敛圆所围的闭区域上绝对收敛.

证明:时,由阿贝尔定理,绝对收敛.

时,由已知条件知,收敛,即收敛,亦即绝对收敛.

6.将下列函数展开为的幂级数,并指出其收敛区域.

(1)

解:由于函数的奇点为,因此它在内处处解析,可以在此圆内展开成的幂级数.根据例4.2的结果,可以得到

将上式两边逐项求导,即得所要求的展开式

=.

(2)

解:①时,由于函数的奇点为,因此它在内处处解析,可以在此圆内展开成的幂级数.

===.

②时,由于函数的奇点为,因此它在内处处解析,可以在此圆内展开成的幂级数.

=

=.

(3)

解:由于函数在复平面内处处解析,所以它在整个复平面内可以展开成的幂级数.

(4)

解:由于函数在复平面内处处解析,所以它在整个复平面内可以展开成的幂级数.

(5)

解:由于函数在复平面内处处解析,所以它在整个复平面内可以展开成的幂级数.

=.

(6)

解:由于函数在复平面内处处解析,所以它在整个复平面内可以展开成的幂级数.

=

==.

7.求下列函数展开在指定点处的泰勒展式,并写出展式成立的区域.

(1)

解:,.

由于函数的奇点为,所以这两个展开式在内处处成立.所以有:

(2)

解:由于

所以.

(3)

解:

=.

展开式成立的区域:,即

(4)

解:,,……,,……,故有

因为的奇点为,所以这个等式在的范围内处处成立。

8.将下列函数在指定的圆域内展开成洛朗级数.

(1)

解:,故有

(2)

解:

①在内

②在内

(3)

解:①在内,②在内

(4)

解:在内

(5)

解:

在内

故有

9.将在的去心邻域内展开成洛朗级数.

解:因为函数的奇点为,所以它以点为心的去心邻域是圆环域.在内

故有

10.函数能否在圆环域内展开为洛朗级数?为什么?

答:不能。函数的奇点为,,所以对于,内都有的奇点,即以为环心的处处解析的圆环域不存在,所以函数不能在圆环域内展开为洛朗级数.

习题五答案

1.求下列各函数的孤立奇点,说明其类型,如果是极点,指出它的级.

(1)

解:函数的孤立奇点是,因

由性质5.2知,是函数的1级极点,均是函数的2级极点.

(2)

解:函数的孤立奇点是,因,由极点定义知,是函数的2级极点.

(3)

解:函数的孤立奇点是,因,由性质5.1知,是函数可去奇点.

(4)

解:函数的孤立奇点是,①,即时,因

所以是的3级零点,由性质5.5知,它是的3级极点

②,时,令,因,由定义5.2知,是的1级零点,由性质5.5知,它是的1级极点

(5)

解:函数的孤立奇点是,令,①

时,,由定义5.2知,是的2级零点,由性质5.5知,它是的2级极点,故是的2级极点.

②时,,由定义5.2知,是的1级零点,由性质5.5知,它是的1级极点,故是的1级极点.

(6)

解:函数的孤立奇点是,令,①

时,因,所以是的2级零点,从而它是的2级极点.

②时,,由定义5.2知,是的1级零点,由性质5.5知,它是的1级极点.

2.指出下列各函数的所有零点,并说明其级数.

(1)

解:函数的零点是,记,①

时,因,故是的2级零点.

②时,,由定义5.2知,是的1级零点.

(2)

解:函数的零点是,因,所以由性质5.4知,是的2级零点.

(3)

解:函数的零点是,,记,①

时,是的1级零点,的1级零点,的2级零点,所以是的4级零点.

②,时,,由定义5.2知,是的1级零点.

③,时,,由定义5.2知,是的1级零点.

3.是函数的几级极点?

答:记,则,,,将代入,得:,由定义5.2知,是函数的5级零点,故是的10级极点.

4.证明:如果是的级零点,那么是的级零点.

证明:因为是的级零点,所以,即,由定义5.2知,是的级零点.

5.求下列函数在有限孤立奇点处的留数.

(1)

解:函数的有限孤立奇点是,且均是其1级极点.由定理5.2知,.

(2)

解:函数的有限孤立奇点是,且是函数的3级极点,由定理5.2,.

(3)

解:函数的有限孤立奇点是,因

所以由定义5.5知,.

(4)

解:函数的有限孤立奇点是,因

所以由定义5.5知,.

(5)

解:函数的有限孤立奇点是,因

所以由定义5.5知,.

(6)

解:函数的有限孤立奇点是.

①,即,因为

所以是的2级极点.由定理5.2,.

②时,记,则,因为,所以由定义5.2知,是的1级零点,故它是的1级极点.由定理5.3,.

6.利用留数计算下列积分(积分曲线均取正向).

(1)

解:是被积函数在积分区域内的有限孤立奇点,且为2级极点,由定理5.2,由定理5.1知,.

(2)

解:是被积函数在积分区域内的有限孤立奇点,且为1级极点,所以由定理5.1及定理5.2,.

(3)

解:是被积函数在积分区域内的有限孤立奇点,因为,所以由性质5.1知是函数的可去奇点,从而由定理5.1,由定理5.1,.

(4)

解:是被积函数在积分区域内的有限孤立奇点,且为2级极点,由定理5.2,由定理5.1,.

(5)

解:是被积函数在积分区域内的有限孤立奇点,由性质5.6知是函数的1级极点,由定理5.1,.

(6)

解:被积函数在积分区域内的有限孤立奇点为:,由定理5.3,这些点均为的1级极点,且

由定理5.1,.

7.计算积分,其中为正整数,.

解:记,则的有限孤立奇点为,且为级极点,分情况讨论如下:

①时,均在积分区域内,由定理5.1,故有.

②时,均不在积分区域内,所以.

③时,在积分区域内,不在积分区域内,所以

习题五

8.判断是下列各函数的什么奇点?求出在的留数。

解:(1)因为

所以,是的可去奇点,且。

(2)因为

所以

于是,是的本性奇点,且。

(3)因为

所以

容易看出,展式中由无穷多的正幂项,所以是的本性奇点。

(4)因为

所以是的可去奇点。

9.计算下列积分:

解:(1)

(2)

从上式可知,所以。

10.求下列各积分之值:

(1)解:设则。于是

(2)解:设则。于是

(3)解:显然,满足分母的次数至少比分子的次数高二次,且在实轴上没有奇点,积分是存在的。在上半平面内只有一个奇点,且为2级极点。于是

(4)解:

显然,满足分母的次数至少比分子的次数高二次,且在实轴上没有奇点,积分是存在的。在上半平面内只有和二个奇点,且都为1

级极点。于是

所以

(5)解:显然,满足分母的次数至少比分子的次数高一次,且在实轴上没有奇点,在上半平面内只有一个奇点,且为1

级极点。于是

(6)解:显然,满足分母的次数至少比分子的次数高一次,且在实轴上没有奇点,在上半平面内只有一个奇点,且为1

级极点。于是

11.利用对数留数计算下列积分:

解:(1),这里为函数在内的零点数,为在内的极点数。

(2)

这里为函数在内的零点数,为在内的极点数;为函数在内的零点数,为在内的极点数。

(3)

这里为函数在内的零点数,为在内的极点数。

(4)

这里为函数在内的零点数,为在内的极点数。

12.证明方程有三个根在环域内

证明:令。因为当时,有

所以,方程与在内根的数目相同,即4个。

又当时,有

所以,方程与在内根的数目相同,即1个。

综合上述得到,在环域内有3个根。

13.讨论方程在与内各有几个根。

解:令。因为当时,有

所以,方程与在内根的数目相同,即1个。

又当时,有

所以,方程与在内根的数目相同,即4个。

根据上述还可以得到,在环域内有3个根。

14.当时,证明方程与在单位圆内有n个根。

证明:令。因为当时,有

所以,当时,方程与在内根的数目相同,即n个。

习题七答案

1.试证:若满足傅氏积分定理的条件,则有

证明:根据付氏积分公式,有

2.求下列函数的傅氏变换:

(1)

(2)

(3)

(4)

解:(1)

f(t)

(2)

(3)

(4)

由于

所以

3.求下列函数的傅氏变换,并推证所列的积分等式。

(1)

证明

(2)

证明。

解:(1)

由傅氏积分公式,当时

所以,根据傅氏积分定理

(2)

由傅氏积分公式

所以,根据傅氏积分定理

5.求下列函数的傅氏变换:

(1)

(2)

(3)

(4)

解:(1)

(2)

(3)

由于

所以

(4)

由于

所以

6.证明:若其中为一实函数,则

其中为的共轭函数。

证明:由于

所以

于是有

7.若,证明(翻转性质)。

证明:由于

所以

对上述积分作变换,则

8.证明下列各式:

(1)

(为常数);

(2)

证明:(1)

(2)

9.计算下列函数和的卷积:

(1)

(2)

(2)

(2)

解:

(1)

显然,有

当时,由于=0,所以;

当时,(2)显然,有

所以,当

时,皆有=0。于是

当时,;

当时,;

当时。

所以

从而

当时,当时,总结上述,得。

10.求下列函数的傅氏变换:

(1)

(2)

(3)

(4)

解:(1)由于

根据位移性质

(2)

(3)根据位移性质

再根据像函数的位移性质

(4)由于

根据微分性质

再根据位移性质。

习题八

1.求下列函数的拉氏变换:

(1)

解:由拉氏变换的定义知:

(2)

解:由拉氏变换的定义以及单位脉动函数的筛选性质知:

2.求下列函数的拉氏变换:

(1)

解:由拉氏变换的线性性质知:

(2)

解:由拉氏变换的线性性质和位移性质知:

(3)

解:法一:利用位移性质。

由拉氏变换的位移性质知:

法二:利用微分性质。

由拉氏变换的微分性质知:

(4)

解:因为

故由拉氏变换的位移性知:

(5)

解:

(6)

解:因为

即:

(7)

解:

法一:利用拉氏变换的位移性质。

法二:利用微分性质。

令则

由拉氏变换的微分性质知:

又因为

所以

(8)

解:法一:利用拉氏变换的位移性质。

因为

法二:利用微分性质。

令,则

由拉氏变换的微分性质知:.故

3.利用拉氏变换的性质计算下列各式:

(1)

解:因为

所以由拉氏变换的位移性质知:

(2)

解:设

由拉氏变换的积分性质知:

再由微分性质得:

所以

4.利用拉氏变换的性质求

(1)

解:法一:利用卷积求解。

由卷积定理知:

法二:利用留数求解。

显然在内有两个2级极点。除此外处处解析,且当时,故由定理8.3知:

(2)

解:法一:利用卷积求解。

由卷积定理知

法二:用留数求解。

显然在内有两个2级极点。除此外处处解析,且当时,故由定理8.3知:

法三:利用拉氏变换积分性质求解。

由(1)题知

5.利用积分性质计算

(1)

解:设

由拉氏变换的微分性质得:

所以

(2)

解:在(1)题中取得

由拉氏变换的位移性质知:

再由拉氏变换的积分性质得

6.计算下列积分:

(1)

解:

由拉氏变换表知:取

(2)

解:

7.求下列函数的拉氏逆变换:

(1)

解:因

取得

(2)

解:因为

所以

(3)

解:设则是的四级极点。

除此外处处解析,且当时,故由定理8.3知:

下面来求留数。

因为

故.所以

(4)

解:设

则在内具有两个单极点

除此外处处解析,且当时,故由定理8.3得:

(5)

解:设

分别为的一阶、二阶极点。显然满足定理8.3的条件,故由定理8.3知:

(6)

解:设

显然

查表知

故由卷积定理得:

(7)

解:设

因为

所以

(8)

解:,因为

所以

即:

8.求下列函数的拉氏逆变换:

(1)

解:

由拉氏变换表知:

所以

(2)

解:

所以

(3)

解:设

由卷积定理知,所以

(4)

解:设

所以

(5)

解:

因为

故由卷积定理知:

又因为

所以

(6)

解:

由拉氏变换表知:

所以

9.求下列卷积:

(1)

解:`因为

所以

(2)

(m,n为正整数);

解:

(3)

解:

(4)

解:

(5)

解:因为

当时,故当

时,即

(6)

解:设

所以当

时,上式为0.当

时,由函数的筛选性质得:

10.利用卷积定理证明下列等式:

(1)

证明:因为

故由卷积定理:

也即,证毕。

(2)

证明:因为

故由卷积定理知:

证毕。

11.解下列微分方程或微分方程组:

(1)

解:设

对方程两边取拉氏变换,得

代入

得:

用留数方法求解拉氏逆变换,有:

(2)

解:设

对方程两边同时取拉氏变换,得

代入初值条件,得:

求拉氏逆变换得方程的解为:

(3)

解:设

用拉氏变换作用方程两边,得:

代入初值条件,有:

即:

因为

所以由卷积定理求拉氏逆变换得:

(4)

解:设

用拉氏变换作用在方程两边得:

将初始条件代入,得:

因为

所以

因此

故方程的解:

(5)

解:设

对方程两边取拉氏变换,得:

代入初始条件,整理得:

由例8.16知:

又因为

因为

所以方程的解

(6)

解:设

对方程组的每个方程两边分别取拉氏变换,并考虑到初始条件得:

求解该方程组得:

取拉式逆变换得原方程组的解为:

(7)

解:设

对方程组的每个方程两边分别取拉氏变换,并考虑到初始条件得:

整理计算得:

下求的拉氏逆变换:

因为

故由卷积定理可得

同理可求

所以方程组的解为

(8)

解:设

对方程组的每个方程两边分别取拉氏变换,并考虑到初始条件得:

解此方程组得:

取拉氏逆变换得原方程组的解为:

12.求解积分方程

解:令

由卷积定理

将拉氏变换作用于原方程两端,得:

也即:

《背影》课后习题及答案 篇3

1、下列有多音字的五组词句中,注音有错误的两组是( )

A、父亲的差(chāi)使 成绩差(chā) 差(chà)异大

B、奔丧(sāng)回家 办丧(sāng)事 丧(sàng)失立场

C、铺(pū)好座位 反对铺(pū)张浪费 临时搭铺(pù)

D、他是一个胖(pàng)子 肥胖 (pàng) 心宽体胖(pán)

E、还(huán)了亏空 你还(huán)是那样 他还(hái)真行

2、下列没有错别字的一项是( )

A、情郁于衷 勾留 锁悄 颓唐

B、触目伤怀 踌蹰 掂记 螨跚

C、满院狼藉 橘子 捡定 历害

D、不能自已 赋闲 栅栏 惨淡

3、解释下列画线字:

⑴ 不能自已_______ ⑵ 颇踌躇_______

⑶ 拭干眼泪________ ⑷ 触目伤怀_________

⑸ 变卖典质_______ ⑹ 琐屑________

⑺ 举箸提笔________ ⑻ 得行些小费________

⑼ 情郁于中_______ ⑽ 迂_____________

4、揣摩句子含义,选择正确答案:

⑴ 父亲说,“事已至此,不必难过,好在天无绝人之路!”( )

A、表现父亲意志坚强。

B、表现父亲体贴、劝慰儿子。

C、表现父亲的乐观精神。

D、暗示已经找到生活出路。

⑵ 唉,我现在想想,那时真是太聪明了。( )

A、因自己聪明而沾沾自喜。

B、反语,悔恨自己太笨。

C、恨自己未能体会父亲的深情。

D、觉得自己聪明过头了反而不好。

⑶ 他触目伤怀,自然情不能自已。情郁于中,自然要发之于怀。( )

A、父亲的脾气越来越坏的原因。

B、父亲对世事人情很不满意。

C、父亲触景生情,感伤不已。

D、父亲对我越来越不好。。

5、说说下列画线词语的`含义。

⑴ 他再三嘱咐茶房,甚是仔细。

⑵ 但最近几年的不见,他终于忘却我的不好,只是惦记着我,惦记着我的儿子。

6、读下面两句话,回答问题。

⑴ 那年冬天,祖母死了,父亲的差使也交卸了,正是祸不单行的日子。

“祸”指 和 。

“不单行”与句中的 相呼应。

⑵近几年来,父亲和我都是东奔西走,家中光是一日不如一日。

“东奔西走”表现了 的家庭景况。

【参考答案】

1、A E

2、D

3、⑴ 停止 控制 ⑵ 很 ⑶ 擦 ⑷ 心 ⑸ 抵押 ⑹ 琐碎 ⑺ 筷子 ⑻ 需要 ⑼ 聚积 ⑽ 言行守旧,不合时宜

4、⑴ B ⑵ C ⑶ A

5、⑴ 说明父亲对茶房嘱咐了好些次,想到就再说,可见其周到、细密。

⑵ “只是”一词深刻地表明父亲对社会已经绝望,在认为“在去之期不远”的心志下,只有把最后的希望寄托在儿子和孙子身上的无可奈何的思想感情。

6、⑴ 祖母死了 父亲的差使交卸了 也

《离骚》课后习题及答案 篇4

同步练习题一

一、填空题

1.长太息以掩涕兮,_______________________。

2.亦余心之所善兮,_______________________。

3._________________,偭规矩而改错 。背绳墨以追曲兮,_______________。

4.制芰荷以为衣兮,____________________,___________________,苟余情其信芳。

5.________________,长余佩之陆离。_______________,唯昭质其犹未亏。

6.民生各有所乐兮,_____________,_____________,____________?

7.屈原,名__________,字__________。其代表作主要有_______________、___________、_______________、______________等。

8.《离骚》全诗主要以主人公“余”的__________构成。它采用__________和__________手法。

9.“离骚”,按东汉班固的解释,即_______________________的意思。

10.《楚辞》是由__________(朝代)代__________(姓名)所辑录的____________、____________及后人仿写的作品,因这些诗歌_________________________故名为“楚辞”。

二、选择题

11.注音,解释全都正确的一项是( )

A.太息:叹息。 謇:jiǎn 谇:suì,进谏

B.谣诼:zhú,造谣诽谤。 ?忳:t ún,郁闷。 ?侘傺:chà jì

C.溘死:突然死亡。溘kè 鸷:凶猛的鸟。

D.兰皋:gāo,有兰草的水边。

同步练习题二

1.下列加点字的读音全都正确的一项是( )

A.侘傺(chà chì) 方枘(nèi) 溘死(kè)

B.攘诟(gòu) 芰荷(zhī) 岌岌(jíjí)

C.鸷鸟(zhì) 方圜(huán) 兰皋(gāo)

D.谣诼(zhuó) 罹难(jí) 杂糅(róu)

2.下列没有通假字的一句是( )

A.余虽好修姱以鞿羁兮,謇朝谇而夕替。

B.忳郁邑余侘傺兮,吾独穷困乎此时也。

C.何方圜之能周兮?夫孰异道而相安。

D.进不入以离尤兮,退将复修吾初服。

3.默写原文语句,回答下列问题。

(1)诗人不只是为自己鸣不平,而且以博大的胸怀,对人民寄予了深厚的同情的语句是_________________________________。

(2)诗人怨恨楚怀王昏聩糊涂,轻信谣言的语句是_____________。继而指斥那班奸佞小人违背规矩,追随邪曲,为了顺适人意,不惜歪曲真理的语句是________。_____________。

(3)诗中体现诗人要坚持美与善的理想和坚定信念,至死不渝的诗句是___________,_________?

4.多用“兮”字是楚辞的形式特点之一。“兮”字通常出现在三种位置上,各有不同的作用。第一种是在一个完整的意思之后,有感叹的意味;第二种是在一句话末尾,表示语意未尽,需待下句补足;第三种是表示一个句子中间的延长,不可读断。

把下列句子归类,将序号填在相应的横线上。

A.鸾鸟凤凰,日以远兮。

B.路漫漫其修远兮,吾将上下而求索。

C.步余马兮山皋,邸余车兮山林。

D.驾青虬兮骖白螭,吾与重华游兮瑶之圃。

E.步余马于兰皋兮,驰椒丘且焉止息。

F.怀信佗傺,忽乎吾将行兮。

属于第一种的有:_______________。属于第二种的有:______________。

属于第三种的有:__________________。

阅读屈原的《涉江》部分段落,回答5~6题。

余幼好此奇服兮,年既老而不衰,带长铗之陆离兮,冠切云之崔嵬。被明月兮佩宝璐。世溷浊而莫余知兮,吾方高驰而不顾。驾青虬兮骖白螭,吾与重华游兮瑶之圃。登昆仑兮食玉英,与天地兮比寿,与日月兮齐光。哀南夷之莫吾知兮,旦余济乎江湘。

5.选出与例句中加点字用法、意思相同的`一项( )

例句:旦余济乎江湘

A.料大王士卒足以当项王乎? B.在乎山水之间。

C.浩浩乎如凭虚御风,不知其所止。 D.有朋自远方来,不亦说乎!

6.下列句子词类活用现象不同的一项是( )

A.李牧连却之 B.粪土当年万户侯

C.驾青虬兮骖白螭 D.吾从而师之

7.下面对诗歌理解有误的一项是( )

A.诗人用服饰的奇特、高洁,比喻德行的高洁和志向的远大。采用了“比”的手法。

B.本段交待了屈原涉江的原因,即“世溷浊”而“莫吾知”的楚国现实。

C.重华即古代的明君舜,该句表现了屈原“贤臣择主而事”的思想,并反衬出现实中楚怀王的昏庸。

D.“登昆仑兮食玉英”义同《离骚》中“夕餐秋菊之落英”,承接上文的被奇服,驾青虬,结重华,游瑶圃等,不仅为我们塑造了一个崇高的艺术形象,而且创造了一个美好的理想世界。

阅读屈原的《九歌 湘夫人》一诗的前三节,回答8~9题。

帝子降兮北渚,目眇眇兮愁予。

袅袅兮秋风,洞庭波兮木叶下。

登白薠兮骋望,与佳期兮夕张。

鸟何萃兮蘋中?罾何为兮木上?

沅有茞兮澧有兰,思公子兮未敢言。

荒忽兮远望,观流水兮潺水湲。

8.对这三个诗节解说有误的一项是( )

A.帝子,指湘夫人,在神话传说中她是古代帝唐尧的女儿,女子古代也可以称子。

B.“与任期兮夕张”句的意思是等待良辰美景的到来,傍晚时分,我已打扮停当。

C.第二诗节的后两句是说,鸟为何翔集于蘋草中?网又为何挂在树梢上?

D.“思公子兮未敢言”的意思是眷恋夫人啊,我朝思暮愁。

9.对这三个诗节赏析有误的一项是( )

A.洲渚、秋风、水波、木叶、香草等自然意象组成了一幅洞庭秋景图,并传达出一种萧瑟的色调,正因此,增加了湘君的悲愁。

B.“目眇眇”暗示着那只不过是一种幻想罢了,湘夫人并未真的降临。

C.从“登白薠兮骋望”?“思公子兮未敢言”、“荒忽兮远望”等诗句可以看出湘君寻湘夫人的一往情深的期待。

D.这首诗与《湘君》是姊妹篇,表现了湘夫人对爱情的渴望和因久候恋人不到产生的惆怅落寞的心情。

阅读《屈原贾生列传》,回答10~13题。

屈平疾王听之不聪也,谗谄(说人坏话,巴结奉承的人)之蔽明也,邪曲(邪恶不正派的人)之害公(公正的好人)也,方正之不容也,故忧愁忧思,而作《离骚》。“离骚”者,犹离忧(遭受忧患。离,通“罹”,遭受)也。……屈平正道直行,竭忠尽智以事其君,谗人间之,可谓穷矣。信而见疑,忠而被谤,能无怨乎?屈平之作《离骚》,盖自怨生也。……其文约,其辞微,其志洁,其行廉。其称文小而其指(通“旨”)极大,举类迩而见义远。其志洁,故其称物芳。其行廉,故死而不容。自疏濯淖污泥之中,蝉蜕于浊秽,以浮游于尘埃之外,不获世之滋垢,皭然泥而不滓者也。推此志,虽与日月争光可也。

10.解释文中加点的词。

方正:_______,穷:_________,信:_______,约:______,微:_______。

11.屈原写作《离骚》的原因是:___________________________。

12.“离骚”的含义是:____________________________________。

13.用自己的话概括本段的大意.

答案:

上一篇:未来两到三年是关键-解读北京市餐厨垃圾资源化处理下一篇:同意档案转入介绍信