ICP-OES内标法三篇

2024-07-31

ICP-OES内标法 篇1

关键词:ICP-OES内标法,紫砂制品,溶出元素

紫砂是紫砂陶器的简称, 与其他的日用陶瓷相比, 紫砂茶具冲泡出来的茶汤在色、香、味上优于其他茶具, 被誉为“茶具之首”。随着生活水平的提高, 人们在注重感官享受的同时, 也开始考虑到健康问题。由于其溶出元素的种类及其含量直接与使用者的身体健康息息相关, 因此, 其准确测定显得尤为重要。目前在检测方法方面, 锰、铬、钴多用火焰原子吸收分光光度法测定, 钡用石墨炉原子吸收分光光度法测定[1]。不同的方法需要处理不同的样品, 比较费力费时。等离子体发射光谱仪 (ICPOES) 是近年来发展成熟的元素检测仪器, 其原理是将处理好的样品导入炬管高温等离子体中, 被测元素受激发释放出特征辐射, 根据特征辐射信号种类及强弱进行定性及定量分析[2], 此方法具有线性范围宽, 稳定性好, 可以多元素同时分析等优点[3,4,5,6]。ICP-OES分为内标法和外标法两种, 本实验用ICP-OES外标法测定紫砂制品溶出元素的过程中, 由于乙酸引起的基体干扰常常使分析结果产生较大的偏差, 减少这种非光谱干扰的方法之一是使用内标。本实验加入的内标添加物为钇, 将钇定量加到样品中去, 依据欲测组分和钇在检测器上的响应值 (峰面积或峰高) 之比和钇加入的量进行定量分析, 其测速快, 准确度和精度高。本实验参照GB/T10816-2008 紫砂陶器中铅、镉溶出的测定和生活饮用水卫生标准GBT/5749-2006, 采用电感耦合等离子体反射光谱法, 进行紫砂壶浸泡液中铅、镉、钡、锰、铬、钴6 种元素的测定。本实验所检紫砂壶原料为清水泥。

1 实验部分

1.1 主要仪器和工作条件

ICP:OPTIMA 7000DV型等离子体反射光谱仪 (美国PERKINELMER公司) 。氩气 (纯度:99.999%) 。高频发生器功率:1450 W ;辅助器流量:0.5 L/min ;雾化器流量:0.7 L/min ;等离子体气流量:15 L/min ;冷却水温度: (18±1) ℃蠕动泵流速:1.5 m L/min ;延迟时间15 s ;积分时间自动 (0.1 ~ 0.5 s) ;处理模式:峰面积;观测方向:轴向;分析谱线:铅220.353 nm、镉228.802 nm、 钡223.527 nm、 锰257.610 nm、 铬267.716 nm、钴228.616 nm、钇371.03 nm。背景校正点偏移值:铅:-0.035/0.023 nm、 镉:-0.057/0.060 nm、钡:-0.0531/0.0186 nm、 锰:-0.0163/0.0219 nm、 铬:-0.040/0.021 nm、钴:-0.0129/0.0275 nm。

1.2 试剂和方法

1.2.1 试剂

三级水;分析纯冰乙酸;优绩纯硝酸;1000 μg/m L的铅、镉、钡、锰、铬、钴、钇7 种单元素标准溶液 (中国计量科学研究院) 。

1.2.2 方法

样品的制备:据GB/T5009.156-2003 食品用包装材料及其制品的浸泡试验方法通则, 先用4% 的乙酸 ( 体积分数) 溶液在20±2 ℃温度下浸泡紫砂壶24h±20 min, 然后用玻璃棒搅拌均匀后移入100 m L容量瓶中。

标准溶液的配制:分别移取10.0 m L铅、镉、钡、锰单元素标准溶液和1.0 m L Cr、Co标准溶液于同一只1000 ml容量瓶中, 用三级水定容至刻度, 制成6 元素混合标准储备液。混合标准储备液中铅、镉、钡、锰、铬、钴的浓度依次为10μg/m L、10μg/m L、10μg/m L、10μg/m L、1μg/m L、1μg/m L。分别从上述标准储备液中移取0 m L、0.5 m L、1.0 m L、2.0 m L、3.0 m L、4.0 m L、5.0 m L于7 只100 m L容量瓶中, 用4% 的乙酸溶液稀释至刻度, 配制成系列标准溶液, 该系列标准溶液中铅、镉、钡、 锰的浓度为0μg/m L、0.05μg/m L、0.1μg/m L、0.2μg/m L、0.3μg/m L、0.4μg/m L、0.5μg/m L ;钴、铬的浓度为0μg/m L、0.005μg/m L、0.01μg/m L、 0.02μg/m L、0.03μg/m L、0.04μg/m L、0.05μg/m L。 并分别向上述7 只100 m L标准溶液容量瓶中加入0.5 m L1000 mg/L的钇, 使所用标准溶液中均含有5 mg/L的钇。

当仪器在最佳状态稳定后, 将含有内标元素的标准溶液引入进样系统, 以选定的参数, 由计算机自动计算出样品所中所测各元素的浓度。

2 结果与讨论

2.1 分析谱线的选择

实验中, 分析谱线用铅220.353 nm、镉228.802 nm、钡233.527 nm、 锰257.610 nm、 铬267.716 nm、 钴228.616nm。内标元素钇的分析线较多, 但经检测显示各分析线在本实验中对元素的分析结果影响不大, 本实验选用371.03nm作为内标分析线。

2.2 干扰及校正方法

在分析过程中, 各元素分析谱线的选择避免了直接重叠和部分重叠, 消除了光谱干扰。背景漂移小到可以忽略不计的程度。本实验的基体干扰主要来自乙酸, 克服基体干扰的方法是稀释样品并且引入内标添加物钇。

2.3 线性范围、方法的检出限和精密度

在本法的测定条件下, 测定系列标准浓度中各元素的谱线强度y, 以谱线强度y对各元素的浓度 ρ (mg/L) 进行线性回归, 求线性回归方程、相关线性系数, 用空白溶液连续测定10 次, 以其3 倍标准偏差所对应的浓度为各元素的检出限, 结果见表1。实验证明:六种元素的谱线强度与其浓度在相应的范围内均具有良好的线性关系。

2.4 回收率

作为评价方法准确性的指标之一, 根据样品中个元素的含量, 对各个元素分别进行低、中、高3 个水平的加标回收试验, 结果见表2。从表2 可见, 回收率为95% ~ 108%, 就紫砂制品溶出元素测定而言, 具有较高准确度。

2.5 样品分析结果:

对50 份紫砂壶的浸泡液分别进行测定, 铅、镉、铬几乎没有, 钡、锰、钴的含量也均低于生活饮用水卫生标准中相应元素的限量值 (Ba < 0.7 mg/L;Mn < 0.1 mg/L.钴的溶出量在GB 5749-2006 的饮用水国标中没有规定, 我们以新西兰饮用水标准小于1 mg/L为设定标准) , 说明所检样品的溶出元素含量是完全符合相应的国家标准要求的。

1、样品钡的浓度:有79% 的浓度在0 ~ 0.12 mg/L;有16% 的浓度在0.12 ~ 0.20 mg/L; 有5% 的浓度在0.20~ 0.5 mg/L。

2、样品锰的浓度:有76% 的浓度在0 ~ 0.06 mg/L;有20% 的浓度在0.06 ~ 0.12 mg/L; 有4% 的浓度在0.12~ 0.5 mg/L。

3、样品钴的浓度:有100% 的浓度在0 ~ 0.004 mg/L。

3 结论

上述实验表明:ICP-OES内标法同时测定紫砂制品溶出元素的含量, 该方法检出限低, 准确度和精密度均能满足国标要求, 可满足检验的要求。

参考文献

[1]邱永斌, 徐泽跃, 何国明.紫砂的显微结构和相关性能研究[J].江苏陶瓷, 2012, 增刊:55.

[2]鞠福龙, 李俊伟, 李春娟.ICP-OES法同时测定果蔬中铅、砷、镉、铬、铜、锡含量[J].辽宁农业科, 2010 (2) :29-30.

[3]孟列群, 赵维佳.生态纺织品中有害金属元素的ICP-AES分析[J].光谱实验室, 2006 (1) :175.

[4]金玉.电感耦合等离子体质谱法检测氧化镓中杂质元素.分析试验室, 2009 (12) :107-110.

[5]米茜, 邓飞跃, 彭穗, 等.真空蒸馏预富集-电感耦合等离子体发射光谱法测定铂.分析化学, 2010, 38 (6) :889.

ICP-OES内标法 篇2

关键词:气相色谱内标法;乙酸乙酯;白酒;概况;方式;分析

中图分类号:TS262.3     文献标识码:A      文章编号:1006-8937(2014)35-0174-02

1  白酒乙酸乙酯的概况

世界六大蒸馏酒主要包括:威士忌、伏特加、白兰地、朗姆酒、金酒及白酒。白酒在我国具有悠久的历史,其香味成分种类有多种形式,主要有醇类、酯类、酸类等。在白酒中酯类化合物具有芳香,在各种香型白酒中具有重要意义,是酒体香气形成的主要原因,在白酒香味成分中主要包括乙酸乙酯等。

《白酒分析方法》是现阶段白酒乙酸乙酯测定其含量的国家检测标准,在检测过程中,酒内都包含乙缩醛,这两种成分的极性十分相似,致使具有一样的保留时间,在检测中往往会出现误认的情况,进而导致白酒中乙酸乙酯含量被假象扩大化,由此可见,目前我国白酒检测方式还存在一定的局限性。

对白酒内乙酸乙酯和乙缩醛进行有效的分离解决,对乙酸乙酯含量进行准确测定的检测方式,可以有效增长气相色谱柱。在分析过程中,酒样处理可以利用无机酸水解法进行,将乙缩醛的干扰屏蔽掉,乙酸乙酯形成孤峰,其分析方式应定量进行。但这些检测方式的应用都是建立在时间增加、成本增加的基础上。如选用适当毛细管色谱柱,从初始柱温、载气及程序升温等因素对分析过程中的色谱条件进行优化,白酒中乙酸乙酯要选用内标法进行分析,为白酒中乙酸乙酯的定性、定量检测提供可靠的依据。

2  气相色谱内标法测定白酒中乙酸乙酯含量的检测   方式

2.1  材  料

白酒、乙醇、乙缩醛、乙酸乙酯、乙酸正戊酯及气相色谱仪等。

2.2  色谱分析条件

2.2.1  毛细管色谱柱1分析

选用白酒分析专用柱LZP-930。程序升温的选用,将其初始温度定为35 ℃,并进行3 min的保留,按照3 ℃/min的速度将其温度上升到124℃,随后再上升到180 ℃,将其加温速度控制在15 ℃/min,并进行保留3.6 min,将整个程序升温过程的时间控制在36 min。将220℃作为进样口的温度,选用分流的方式进行进样作业,分流比设定为30 ℃。将220 ℃作为检测器温度,将高纯氦气作为载气,其纯度控制在99.999%,将1.8 ml/min作为其流速。

2.2.2  毛细管色谱柱2分析

Agilent DB-WAX;程序升温的选用,将其初始温度定为30 ℃,并保留4min,按照速度由5 ℃/min上升到60 ℃/min,随后再上升到180℃/min,将其加温速度控制在8 ℃/min,保留时间为1min,将整个程序升温过程的时间控制在26 min。将220 ℃定为进样口温度,选用分流的方式进行进样作业,将35作为其分流比,220 ℃作为检测器的温度,选用高纯氦气作为载气,流速控制在1.54 ml/min。

2.3  配制标准溶液

选用乙醇(色谱纯)与水进行乙醇溶液的配制;乙酸乙酯溶液的配制要进行乙酸乙酯(色谱纯)2 ml地吸取,并选用乙醇溶液定溶到100 ml;乙酸正戊酯主要作用是内标,将乙酸正戊酯进行2 ml的地吸取,并选用乙醇溶液将其到100 ml进行定溶;标准工作液就是对乙酸乙酯溶液的0.5 ml、2 ml、4 ml及6 ml进行分别吸取,将向100 ml的容量瓶内移入,并将1 ml的内标溶液逐一加入,稀释要选用乙醇溶液进行直至刻度位置。由此得出,溶液内乙酸乙酯含量分别为0.09 g/L、0.18 g/L、0.36 g/L、0.72 g/L、1.08 g/L,内标物的浓度都是0.02%(体积分数)。

2.4  处理样品

将白酒样品中8 ml的液体吸取到10 ml的容量瓶内,并将0.1 ml的内标溶液加入到容量瓶中,定容时要采用白酒样品进行,待其均匀混合后进行检测。

3  气相色谱内标法测定白酒中乙酸乙酯含量的分析

根据检测得出,在白酒分析专用柱LZP-930上乙酸乙酯和乙缩醛保留时间分别为5.527 min和5.697 min,在两个色谱峰中存在一定的重合部分;在Agilent DB-WAX上乙酸乙酯和乙缩醛保留的时间分别是4.695 min和4.820 min,在各个检测方式中存在良好的色谱峰分离状况。

3.1  选择色谱柱的方式

在《白酒分析方法》国家检测标准中选用白酒分析专用柱LZP-930或毛细管色谱柱FFAP作为测定乙酸乙酯的方式。但在实际操作中普遍还选用PEG柱等作为白酒乙酸乙酯含量地分析。这种方式并不能将白酒中的乙酸乙酯和乙缩醛进行有效分离,基于此,应选用白酒分析专用柱LZP-930和DB-WAX柱作为分离白酒中乙酸乙酯和乙缩醛的主要方式。

3.2  方法精密度的确定

在同一条件下,将浓度水平不同的3个白酒样品分别进行6次重复测定,对其相对标准偏差进行准确计算,其测定结果见表1。

由此可见,其结果相对标准偏差必须在2.18%以下,进而表明这种检测方式具有较高的精密度。

3.3  载气的选择

如选用氮气作为白酒中乙酸乙酯和乙缩醛分离的载气,则在白酒分析专用柱LZP-930中会出现色谱峰重合的情况,根本无法起到将两者有效分离的效果;即使在Agilent DB-WAX中选用氮气作为载气,也会存在两者之间部分重合的情况,其分离效果也不理想。因此,在白酒乙酸乙酯和乙缩醛分离检测中,应将氦气作为载气,这样就可以达到良好的分离效果。

3.4  方法的回收率

在白酒样品中加入一定量的乙酸乙酯标样,遵循以上方式进行样品前的处理,并进行GC-FID的分析,进而对添加回收率进行测定。经测定后,得出其添加回收率在97.7%~101.0%之间,由此可见,这种方式具有较高的准确性和可靠性。

4  结  语

综上所述,在白酒中乙酸乙酯含量检测中,选用气相色谱内标法进行测定,可以有效将白酒中的乙酸乙酯和乙缩醛进行分离。这种方式从检测的准确性、精密性等方面都可以充分满足白酒中乙酸乙酯的定性、定量检测条件。

参考文献:

[1] 胡坷平,程劲松,杨屹,等.快速毛细管气相色谱分析白酒中的香味成分[J].分析科学学报,2008,(3).

[2] 汤道文,王卫东,汤翠红,等.毛细管柱气相色谱法测定白酒中乙酸乙酯和乙缩醛[J].酿酒科技,2010,(4).

摘  要:气相色谱内标法就是进行一种毛细管气相色谱法的建立,进而对白酒中乙酸乙酯含量进行检测的一种方式。在检测白酒的过程中,因为乙酸乙酯和乙缩醛极性存在极大的相似性,在分离过程中难度较大。基于此,文章主要对白酒乙酸乙酯的概况、气相色谱内标法测定白酒中乙酸乙酯含量的检测方式及检测分析进行了探究,以此为提高白酒中乙酸乙酯含量的准确度提供可靠的保障。

关键词:气相色谱内标法;乙酸乙酯;白酒;概况;方式;分析

中图分类号:TS262.3     文献标识码:A      文章编号:1006-8937(2014)35-0174-02

1  白酒乙酸乙酯的概况

世界六大蒸馏酒主要包括:威士忌、伏特加、白兰地、朗姆酒、金酒及白酒。白酒在我国具有悠久的历史,其香味成分种类有多种形式,主要有醇类、酯类、酸类等。在白酒中酯类化合物具有芳香,在各种香型白酒中具有重要意义,是酒体香气形成的主要原因,在白酒香味成分中主要包括乙酸乙酯等。

《白酒分析方法》是现阶段白酒乙酸乙酯测定其含量的国家检测标准,在检测过程中,酒内都包含乙缩醛,这两种成分的极性十分相似,致使具有一样的保留时间,在检测中往往会出现误认的情况,进而导致白酒中乙酸乙酯含量被假象扩大化,由此可见,目前我国白酒检测方式还存在一定的局限性。

对白酒内乙酸乙酯和乙缩醛进行有效的分离解决,对乙酸乙酯含量进行准确测定的检测方式,可以有效增长气相色谱柱。在分析过程中,酒样处理可以利用无机酸水解法进行,将乙缩醛的干扰屏蔽掉,乙酸乙酯形成孤峰,其分析方式应定量进行。但这些检测方式的应用都是建立在时间增加、成本增加的基础上。如选用适当毛细管色谱柱,从初始柱温、载气及程序升温等因素对分析过程中的色谱条件进行优化,白酒中乙酸乙酯要选用内标法进行分析,为白酒中乙酸乙酯的定性、定量检测提供可靠的依据。

2  气相色谱内标法测定白酒中乙酸乙酯含量的检测   方式

2.1  材  料

白酒、乙醇、乙缩醛、乙酸乙酯、乙酸正戊酯及气相色谱仪等。

2.2  色谱分析条件

2.2.1  毛细管色谱柱1分析

选用白酒分析专用柱LZP-930。程序升温的选用,将其初始温度定为35 ℃,并进行3 min的保留,按照3 ℃/min的速度将其温度上升到124℃,随后再上升到180 ℃,将其加温速度控制在15 ℃/min,并进行保留3.6 min,将整个程序升温过程的时间控制在36 min。将220℃作为进样口的温度,选用分流的方式进行进样作业,分流比设定为30 ℃。将220 ℃作为检测器温度,将高纯氦气作为载气,其纯度控制在99.999%,将1.8 ml/min作为其流速。

2.2.2  毛细管色谱柱2分析

Agilent DB-WAX;程序升温的选用,将其初始温度定为30 ℃,并保留4min,按照速度由5 ℃/min上升到60 ℃/min,随后再上升到180℃/min,将其加温速度控制在8 ℃/min,保留时间为1min,将整个程序升温过程的时间控制在26 min。将220 ℃定为进样口温度,选用分流的方式进行进样作业,将35作为其分流比,220 ℃作为检测器的温度,选用高纯氦气作为载气,流速控制在1.54 ml/min。

2.3  配制标准溶液

选用乙醇(色谱纯)与水进行乙醇溶液的配制;乙酸乙酯溶液的配制要进行乙酸乙酯(色谱纯)2 ml地吸取,并选用乙醇溶液定溶到100 ml;乙酸正戊酯主要作用是内标,将乙酸正戊酯进行2 ml的地吸取,并选用乙醇溶液将其到100 ml进行定溶;标准工作液就是对乙酸乙酯溶液的0.5 ml、2 ml、4 ml及6 ml进行分别吸取,将向100 ml的容量瓶内移入,并将1 ml的内标溶液逐一加入,稀释要选用乙醇溶液进行直至刻度位置。由此得出,溶液内乙酸乙酯含量分别为0.09 g/L、0.18 g/L、0.36 g/L、0.72 g/L、1.08 g/L,内标物的浓度都是0.02%(体积分数)。

2.4  处理样品

将白酒样品中8 ml的液体吸取到10 ml的容量瓶内,并将0.1 ml的内标溶液加入到容量瓶中,定容时要采用白酒样品进行,待其均匀混合后进行检测。

3  气相色谱内标法测定白酒中乙酸乙酯含量的分析

根据检测得出,在白酒分析专用柱LZP-930上乙酸乙酯和乙缩醛保留时间分别为5.527 min和5.697 min,在两个色谱峰中存在一定的重合部分;在Agilent DB-WAX上乙酸乙酯和乙缩醛保留的时间分别是4.695 min和4.820 min,在各个检测方式中存在良好的色谱峰分离状况。

3.1  选择色谱柱的方式

在《白酒分析方法》国家检测标准中选用白酒分析专用柱LZP-930或毛细管色谱柱FFAP作为测定乙酸乙酯的方式。但在实际操作中普遍还选用PEG柱等作为白酒乙酸乙酯含量地分析。这种方式并不能将白酒中的乙酸乙酯和乙缩醛进行有效分离,基于此,应选用白酒分析专用柱LZP-930和DB-WAX柱作为分离白酒中乙酸乙酯和乙缩醛的主要方式。

3.2  方法精密度的确定

在同一条件下,将浓度水平不同的3个白酒样品分别进行6次重复测定,对其相对标准偏差进行准确计算,其测定结果见表1。

由此可见,其结果相对标准偏差必须在2.18%以下,进而表明这种检测方式具有较高的精密度。

3.3  载气的选择

如选用氮气作为白酒中乙酸乙酯和乙缩醛分离的载气,则在白酒分析专用柱LZP-930中会出现色谱峰重合的情况,根本无法起到将两者有效分离的效果;即使在Agilent DB-WAX中选用氮气作为载气,也会存在两者之间部分重合的情况,其分离效果也不理想。因此,在白酒乙酸乙酯和乙缩醛分离检测中,应将氦气作为载气,这样就可以达到良好的分离效果。

3.4  方法的回收率

在白酒样品中加入一定量的乙酸乙酯标样,遵循以上方式进行样品前的处理,并进行GC-FID的分析,进而对添加回收率进行测定。经测定后,得出其添加回收率在97.7%~101.0%之间,由此可见,这种方式具有较高的准确性和可靠性。

4  结  语

综上所述,在白酒中乙酸乙酯含量检测中,选用气相色谱内标法进行测定,可以有效将白酒中的乙酸乙酯和乙缩醛进行分离。这种方式从检测的准确性、精密性等方面都可以充分满足白酒中乙酸乙酯的定性、定量检测条件。

参考文献:

[1] 胡坷平,程劲松,杨屹,等.快速毛细管气相色谱分析白酒中的香味成分[J].分析科学学报,2008,(3).

[2] 汤道文,王卫东,汤翠红,等.毛细管柱气相色谱法测定白酒中乙酸乙酯和乙缩醛[J].酿酒科技,2010,(4).

摘  要:气相色谱内标法就是进行一种毛细管气相色谱法的建立,进而对白酒中乙酸乙酯含量进行检测的一种方式。在检测白酒的过程中,因为乙酸乙酯和乙缩醛极性存在极大的相似性,在分离过程中难度较大。基于此,文章主要对白酒乙酸乙酯的概况、气相色谱内标法测定白酒中乙酸乙酯含量的检测方式及检测分析进行了探究,以此为提高白酒中乙酸乙酯含量的准确度提供可靠的保障。

关键词:气相色谱内标法;乙酸乙酯;白酒;概况;方式;分析

中图分类号:TS262.3     文献标识码:A      文章编号:1006-8937(2014)35-0174-02

1  白酒乙酸乙酯的概况

世界六大蒸馏酒主要包括:威士忌、伏特加、白兰地、朗姆酒、金酒及白酒。白酒在我国具有悠久的历史,其香味成分种类有多种形式,主要有醇类、酯类、酸类等。在白酒中酯类化合物具有芳香,在各种香型白酒中具有重要意义,是酒体香气形成的主要原因,在白酒香味成分中主要包括乙酸乙酯等。

《白酒分析方法》是现阶段白酒乙酸乙酯测定其含量的国家检测标准,在检测过程中,酒内都包含乙缩醛,这两种成分的极性十分相似,致使具有一样的保留时间,在检测中往往会出现误认的情况,进而导致白酒中乙酸乙酯含量被假象扩大化,由此可见,目前我国白酒检测方式还存在一定的局限性。

对白酒内乙酸乙酯和乙缩醛进行有效的分离解决,对乙酸乙酯含量进行准确测定的检测方式,可以有效增长气相色谱柱。在分析过程中,酒样处理可以利用无机酸水解法进行,将乙缩醛的干扰屏蔽掉,乙酸乙酯形成孤峰,其分析方式应定量进行。但这些检测方式的应用都是建立在时间增加、成本增加的基础上。如选用适当毛细管色谱柱,从初始柱温、载气及程序升温等因素对分析过程中的色谱条件进行优化,白酒中乙酸乙酯要选用内标法进行分析,为白酒中乙酸乙酯的定性、定量检测提供可靠的依据。

2  气相色谱内标法测定白酒中乙酸乙酯含量的检测   方式

2.1  材  料

白酒、乙醇、乙缩醛、乙酸乙酯、乙酸正戊酯及气相色谱仪等。

2.2  色谱分析条件

2.2.1  毛细管色谱柱1分析

选用白酒分析专用柱LZP-930。程序升温的选用,将其初始温度定为35 ℃,并进行3 min的保留,按照3 ℃/min的速度将其温度上升到124℃,随后再上升到180 ℃,将其加温速度控制在15 ℃/min,并进行保留3.6 min,将整个程序升温过程的时间控制在36 min。将220℃作为进样口的温度,选用分流的方式进行进样作业,分流比设定为30 ℃。将220 ℃作为检测器温度,将高纯氦气作为载气,其纯度控制在99.999%,将1.8 ml/min作为其流速。

2.2.2  毛细管色谱柱2分析

Agilent DB-WAX;程序升温的选用,将其初始温度定为30 ℃,并保留4min,按照速度由5 ℃/min上升到60 ℃/min,随后再上升到180℃/min,将其加温速度控制在8 ℃/min,保留时间为1min,将整个程序升温过程的时间控制在26 min。将220 ℃定为进样口温度,选用分流的方式进行进样作业,将35作为其分流比,220 ℃作为检测器的温度,选用高纯氦气作为载气,流速控制在1.54 ml/min。

2.3  配制标准溶液

选用乙醇(色谱纯)与水进行乙醇溶液的配制;乙酸乙酯溶液的配制要进行乙酸乙酯(色谱纯)2 ml地吸取,并选用乙醇溶液定溶到100 ml;乙酸正戊酯主要作用是内标,将乙酸正戊酯进行2 ml的地吸取,并选用乙醇溶液将其到100 ml进行定溶;标准工作液就是对乙酸乙酯溶液的0.5 ml、2 ml、4 ml及6 ml进行分别吸取,将向100 ml的容量瓶内移入,并将1 ml的内标溶液逐一加入,稀释要选用乙醇溶液进行直至刻度位置。由此得出,溶液内乙酸乙酯含量分别为0.09 g/L、0.18 g/L、0.36 g/L、0.72 g/L、1.08 g/L,内标物的浓度都是0.02%(体积分数)。

2.4  处理样品

将白酒样品中8 ml的液体吸取到10 ml的容量瓶内,并将0.1 ml的内标溶液加入到容量瓶中,定容时要采用白酒样品进行,待其均匀混合后进行检测。

3  气相色谱内标法测定白酒中乙酸乙酯含量的分析

根据检测得出,在白酒分析专用柱LZP-930上乙酸乙酯和乙缩醛保留时间分别为5.527 min和5.697 min,在两个色谱峰中存在一定的重合部分;在Agilent DB-WAX上乙酸乙酯和乙缩醛保留的时间分别是4.695 min和4.820 min,在各个检测方式中存在良好的色谱峰分离状况。

3.1  选择色谱柱的方式

在《白酒分析方法》国家检测标准中选用白酒分析专用柱LZP-930或毛细管色谱柱FFAP作为测定乙酸乙酯的方式。但在实际操作中普遍还选用PEG柱等作为白酒乙酸乙酯含量地分析。这种方式并不能将白酒中的乙酸乙酯和乙缩醛进行有效分离,基于此,应选用白酒分析专用柱LZP-930和DB-WAX柱作为分离白酒中乙酸乙酯和乙缩醛的主要方式。

3.2  方法精密度的确定

在同一条件下,将浓度水平不同的3个白酒样品分别进行6次重复测定,对其相对标准偏差进行准确计算,其测定结果见表1。

由此可见,其结果相对标准偏差必须在2.18%以下,进而表明这种检测方式具有较高的精密度。

3.3  载气的选择

如选用氮气作为白酒中乙酸乙酯和乙缩醛分离的载气,则在白酒分析专用柱LZP-930中会出现色谱峰重合的情况,根本无法起到将两者有效分离的效果;即使在Agilent DB-WAX中选用氮气作为载气,也会存在两者之间部分重合的情况,其分离效果也不理想。因此,在白酒乙酸乙酯和乙缩醛分离检测中,应将氦气作为载气,这样就可以达到良好的分离效果。

3.4  方法的回收率

在白酒样品中加入一定量的乙酸乙酯标样,遵循以上方式进行样品前的处理,并进行GC-FID的分析,进而对添加回收率进行测定。经测定后,得出其添加回收率在97.7%~101.0%之间,由此可见,这种方式具有较高的准确性和可靠性。

4  结  语

综上所述,在白酒中乙酸乙酯含量检测中,选用气相色谱内标法进行测定,可以有效将白酒中的乙酸乙酯和乙缩醛进行分离。这种方式从检测的准确性、精密性等方面都可以充分满足白酒中乙酸乙酯的定性、定量检测条件。

参考文献:

[1] 胡坷平,程劲松,杨屹,等.快速毛细管气相色谱分析白酒中的香味成分[J].分析科学学报,2008,(3).

ICP-OES内标法 篇3

CCD-ICP-AES内标法同时测定化肥中12种有害元素

研究了采用CCD-ICP-AES同时测定化肥中As、Cd、Co、Cr、Cu、Hg、Mo、Ni、Pb、Sb、Se和Zn等12种有害元素的方法.采用微波消解法处理样品,加入Y作为内标,消除了化肥基体对测定结果的.干扰效应.方法对化肥中各元素的测定回收率在81.6%~120%之间,测定精密度在0.7%~13.8%之间.用该法测定了两种国家标准物质.

作 者:刘志红 刘丽 李宣 陈向阳 李英 李彬 刘贤杰 陈麒宇 LIU Zhi-hong LIU Li LI Xuan CHEN Xiang-yang LI Ying LI Bin LIU Xian-jie CHEN Qi-yu  作者单位:深圳出入境检验检疫局,深圳,518045 刊 名:分析试验室  ISTIC PKU英文刊名:CHINESE JOURNAL OF ANALYSIS LABORATORY 年,卷(期): 26(6) 分类号:O657.31 关键词:化肥   CCD-ICP-AES   测定   有害元素   微波消解   钇   内标法  

【ICP-OES内标法】推荐阅读:

水分析中ICP-MS在线内标对分析结果的影响08-28

上一篇:除险加固设计下一篇:作文创作

热搜文章

    相关推荐