模具寿命五篇

2024-07-08

模具寿命 篇1

冷挤压是一种先进的压力加工方法,无论在技术上和经济上都有显著特点,该工艺可以大量节约原材料,生产效率高,容易实现自动化,可加工形状复杂的零件。冷挤压件具有强度高、刚性好、重量轻、表面光洁和尺寸精度高等优点。因而,是航空、交通运输、通讯、家电、自行车等行业广泛采用的一种先进工艺技术。

冷挤压模具是保证挤压件形状尺寸和精度的重要工装,是保证挤压件表面质量的重要因素之一。模具寿命长短直接影响产品质量和生产效率的提高。因此,提高挤压模具寿命对降低生产成本,提高经济效益有着十分重要意义。

2 冷挤压模具失效原因

冷挤压模具失效概括地说包含两方面:模具本身的损坏和生产出挤压件尺寸的超差。模具本身损坏又分为正常和非正常两种损坏形式,非正常损坏既无规律可寻,又可通过人为方法加以克服。本文主要讨论正常工作条件下的损坏,即冷挤压模具的失效。模具失效的主要形式有磨损、塑性变形、疲劳破坏和断裂。

冷挤压模具失效原因:挤压工艺循环过程中,变形金属和模具工作表面之间的相对运动产生剧烈摩擦导致模具表面磨损;模具内部反复引起的高压应力,使模具工作时受到非对称的交变应力作用而发生塑性变形;挤压时金属的剧烈流动产生的热效应和摩擦热使模具工作表面温度升高(可高达400℃以上),当取出工件加润滑剂时这一工作间隙时间,这极易使模具表面散热降温。所以模具在完成一个工艺循环时,需经受一次热循环引起的交变应力作用,导致疲劳裂纹破坏。

特殊的是挤压凸模比较细长,工作循环过程中,由于受侧向力和附加弯曲应力的作用,根部产生很大的交变弯曲应力,也易发生疲劳破坏。因此,弯曲应力对凸模的疲劳破坏不可忽视。

3 影响冷挤压模具寿命因素分析

3.1 模具材料对寿命的影响

挤压工艺循环中,模具工作环境较差,要保证挤压模具能够长时间可靠工作,所选择的模具材料必须具备高硬度、高强度、高耐磨性和良好的韧性、足够的热稳定性、热硬性、耐热疲劳性。

如果模具材料选用不合理,即使价格昂贵的模具钢其效果也难以奏效。例如,挤压铅、铝等软材料零件,选用高速钢(如W18Cr4V)来制作模具,其寿命并不理想。若选用优质碳素工具钢,可以达到理想效果。反之,挤压硬材料的钢件时,选择Cr12MoV这类高铬工具钢或W18Cr4V这类高速工具钢,热处理后,不仅强度高、硬度高、而且韧性、热硬性和耐磨性也好,完全可满足钢件挤压模具的要求。因此,根据挤压件材料种类和复杂程度、挤压方式、模具结构形式、模具实际工作条件、生产批量大小及设备类型综合考虑选择模具材料,是保证挤压模具具有高寿命的前提。

3.2 凸模的弯曲应力对模具寿命影响

凸模的弯曲应力是由于凸模头部受到侧向力作用的结果,其来源主要有如下几方面:模具制造、安装误差或压力机静态精度不好,模具安装后,凸模中心线相对于凹模中心线发生偏斜,工作时,凸模就会受到侧向力作用;毛坯两端面不平行或与外圆不垂直,毛坯在凹模内因间隙大而放偏,挤压时凸模会受到侧向力的影响;模架中心与压力机中心不重合,或模具结构不对称,使压力机台面和模板弹性压缩变形不对称,压力机本身刚性和精度差等都是产生侧向力的来源;凸凹模紧固不牢靠,在上述侧向力作用下,模具发生“移动”使凸模中心错开。

凸模在这些侧向力作用下,会发生弹性弯曲,在凸模弯矩最大处,弯曲应力最高,有:

式中:Mmax———凸模最大弯矩,产生在凸模根部;

W———凸模抗弯截面模量。

式中:αC———应力集中系数;

Q———侧向力;

l———凸模杆部长度。

如果σ弯远大于凸模的疲劳强度时,在较少的挤压次数后就会引起一条或数条疲劳裂纹,此时,称为高应力疲劳破坏;若σ弯很小,多次挤压后也会引起疲劳裂纹,此时称为低应力疲劳破坏。因此,σ弯的大小直接影响挤压次数N,即凸模寿命。

设凸模的裂纹长度a,根据断裂力学Paris—Erdongan公式,有

式中:da/d N———亚临界扩张速率(即a<裂纹临界长度ac时);

△K———应力强度因子振幅值;

C、m———材料常数,查表或试验确定。

式中:Y———裂纹荷因子;

σa———交变应力幅值。

将式(4)代入式(3),可得:

因Y与a无关,积分后得:

式中:ai———裂纹初始尺寸。

由式(7)可知:

由上式可以看出,N与σ弯的某次方成反比。可见,σ弯的大小对凸模疲劳寿命的影响是很大的。

3.3 热处理工艺对模具寿命的影响

模具的使用寿命在很大程度上取决于热处理的质量。热处理的目的不仅是为了提高模具的硬度,也是为了改善钢的组织和性能,以获得理想的热强度和韧性。为确保热处理质量,近年来普遍采用可控气氛和真空热处理工艺,对温度、温升和冷却速度、淬火介质、回火次数等参数进行大量研究,并取得良好的效果。例如:滚动触头零件冷挤压模具,模具材料为Cr12钢,采用普通的一次硬化热处理工艺,寿命仅为6000~8000件,主要失效形式为开裂;改为锻热固溶淬火(1050℃油淬)+等温淬火(780℃)双重热处理工艺方法,可使模具寿命提高1.5倍以上。采用双重淬火工艺,可使碳化物呈弥散析出,均匀分布于钢的基体中,最终组织为10%下贝氏体+回火马氏体和弥散分布的碳化物及少量残余奥氏体。硬度58~62HRC,这种组织细密,有高的强韧性、耐磨性和良好的断裂韧性。

3.4 模具加工方法对模具寿命影响

电火花切割已广泛用于模具加工。由于线切割加工一般都是在热处理后进行,从而避免了热处理变形、表面脱碳等弊端。但由于线切割工艺大多采用快走丝方法,线切割后工件表面粗糙度Ra>2.5μm,硬度分布和内应力状态都较差。所以不经研磨或稍加研磨就装配使用,结果经常出现崩刃、折断、碎裂等现象。正常使用情况下,模具寿命也很低。

模具寿命低的原因主要是:线切割加工时,放电区电流密度很大(10000A/mm2),温度很高(10000℃~12000℃),加注的介质液急剧冷却,使切割表面层硬度仅有20HRC左右。其后为热影响区,再后才是原硬度区,而内部淬火层硬度高达70HRC以上。更为严重的是原材料内部因淬火呈拉应力状态,线切割所产生的热应力状态也是拉应力,两种拉应力叠加的结果很容易达到材料抗拉强度而产生微裂纹,从而大大缩短模具寿命。因此,线切割工艺不能作为挤压凸、凹模的最终加工工序。必须采取其他工艺方法消除应力。目前,最有效的消除应力措施有以下两种。

(1)研磨+回火处理

线切割加工后,用研磨的方法去掉表面20HRC的白层,再经160℃~180℃回火处理2h,则白层下面的高硬层可降低6~8HRC,线切割产生的热应力得以消除。从而提高了钢的韧性,延长了模具使用寿命。

(2)研磨+低温时效处理

线切割加工表面经研磨后,白层和高硬层基本去掉。再进行120℃~150℃下5h~10h低温时效处理(低温回火处理),或采取160℃~180℃下4h~6h低温回火处理,可消除淬火层内部的拉应力。而硬度降低甚微,却大大提高了钢的韧性,降低了脆性,挤压模具寿命可提高4倍以上。若挤压模具在生产若干零件后,内部应力已经积聚很高。也可用此方法消除内应力,提高韧性从而提高模具寿命。

4 提高挤压模具寿命途径

4.1 正确选用模具材料

模具材料是影响冷挤压模具寿命的关键因素之一,模具制造周期长,成本高,材料费用仅为模具费用的10%~15%左右,因此,要尽可能选用品质优良钢材制造挤压模具。例如:(1)挤压形状较为复杂材质为20钢的支撑块零件时,选用3Cr2W8V材料,热处理硬度为48~52HRC,模具寿命仅为6000件左右,主要破坏形式为型腔角部破裂,模具工作表面磨损。改变工艺方法,进行气体碳氮共渗,模具表面硬度提高到60~62HRC后,模具使用寿命超过2万件;(2)挤压材质为Q235钢的轴挡和轴管类零件时,选用强度高,塑性和韧性好的7CrSiMnMoV(CH)材料。采用560℃预热+880℃油淬+200℃回火热处理工艺,其模具使用寿命可达到9000件左右。

4.2 减少挤压件壁厚差

前述分析可知,侧向力的来源很多,它们之间又有复杂的交互作用。因此,σ弯很难用精确计算求得,而且σ弯还与应力集中有关,所以,模具材料、加工方法和工作状况及凸模形状都会影响σ弯的大小。试验分析表明,凸模的σ弯与挤压件的偏心量e成正比。因此,可以用挤压件偏心量e来反映σ弯的大小。为便于分析,忽略工件内孔和外圆形状误差,偏心量就等于壁厚差之半。显然,测量工件壁厚差比测量弯曲应力σ弯简单多了。

设挤压件壁厚差为δ。

则由式(8)可得:

即说明挤压次数(模具寿命)与挤压件壁厚差的某一次方成反比,若其他情况不变,则减小挤压件壁厚差,凸模的疲劳寿命可得到很大提高。因此,壁厚差较小的挤压件不仅可提高挤压件精度,而且可大大地提高模具使用寿命。

4.3 表面强化处理

为进一步提高挤压模具寿命,可对挤压模具工作表面进行碳氮共渗、离子氮化、渗碳、渗硼及局部刷镀、喷涂等表面处理方法,使模具工作表面生成一层高强度、有极好耐磨性的化合物,从而增加模具耐磨性,以提高挤压模具寿命。

表面强化工艺中的PVD、CVD、PCVD技术均可用于模具工作表面处理,运用PCVD沉积工艺,可在模具工作表面形成TiC、TiN镀膜,模具寿命可提高几倍到几十倍。

5 结束语

综上分析可知,选用品质优良的冷挤压模具材料,正确合理的设计挤压凸模结构,采用先进的热处理工艺和表面强化处理技术,规范冷挤压模具使用过程控制,可有效的提高冷挤压模具使用寿命,从而达到提高冷挤压件生产率、节约材料、降低生产成本的目的。

参考文献

[1]卢吉连.花键套筒冷挤凸模的正确选材.机械工程材料,1998,(5):41-43.

[2]彭成允,等.3Cr2W8V钢用于冷挤压模.金属热处理,2001,(7):33-35.

[3]王德文.钢的冷挤压模具材料及其热处理.中国热处理年鉴,2003.

[4]王德文,主编.提高模具技术应用实例.北京:机械工业出版社,2004.

模具寿命 篇2

随着经济社会的进步, 人们对加工工艺的要求越来越高, 所以加强了对工艺的管理。模具是加工过程中必要的材料, 受到各行各业的广泛关注。模具利用成型的工具生产各种类型的零件, 保证能够满足加工需要。模具的材料选择、热处理很大程度上影响使用寿命。只有提高模具加工水平, 才能实现工艺技术的提高, 促进工艺加工行业的发展。

1 模具概述

1.1 模具介绍

模具主要利用成型的工具生产各种类型的零件, 以保证能够满足加工需要。在工业生产中, 主要利用挤压、吹塑、压铸等方式制造出需要产品的模子与工具[1]。换言之模具是为产品成型服务的工具。模具广泛应用在冲裁、加压、冶金、陶瓷、橡胶等材料的成形加工中, 其具有独特的轮廓或内腔形状, 采用具备刃口的轮廓则能够将坯料依照轮廓线的外形冲裁。利用内腔型能够使得坯料获得相应的立体形状。

1.2 模具分类

如今我国模具的含量主要为高合金刚和合金钢, 多数质量良好, 可以生产质量极高的钢材料。因为模具钢的含量有差异, 导致其呈现出的机械性能同样存在差异。同一元素的模具钢, 其热处理条件不同, 由此导致具备不同的金属结构。通常, 模具主要分为三种类型:热作、冷作和塑料模具钢。我国模具利用钢材料大体形成了一个体系, 不同种类的模具钢、钢结硬质合金等材料接近80种, 如:Ti C基、Ti N基、WC%26mdash、T10A、Cr8、9Cr WMn、4Cr5Mo Si VNi (H13) 等等[2]。塑性成形工艺中, 模具所占的地位非常重要。模具的使用寿命直接影响着工程造价。因此对模具材料、构成、形态等应加以重视。

2 影响模具使用寿命的主要因素

2.1 结构设计

模具结构的不科学设计是导致其性能消失与热处理形变发生的重要原因。因此模具的机构设计最好应控制锋利的圆状角与过大的截面积不要发生改变。锋利的圆状角带来的应力通常会高到预估应力值的几倍之多。而在材料的构成标准中, 这种比较锋利的角不被允许去除时, 需要将大体组成变化为组合形式的加工或者将尖锐的圆角放在热处理进行后, 这在很大程度上能够保证避结构设计中的误差。同时, 截面的大小均匀与否能够保障模具形变和裂缝。同样的状况下, 多数形状复杂且常发生裂缝的模具需要利用组合式, 防止过度对模具寿命产生的不必要的影响。

2.2 模具材料的选择

模具材料对模具使用寿命的影响比较明显, 主要体现在模具材料的选择、材料质量、使用科学与否等方面。所以在对材料的选择上, 需要参考模具自身的功能与功效。冷模具的硬度、抗磨性能、弹性等是重要的考量因素, 在模具的出现失效时, 通常为脆性开裂的问题[3]。此时, 应选择较硬且具有韧性的材料或者生产科学的热处理工艺, 以此完善钢的韧性。或可以依照现实状况选择硬度大和韧性高的高级合金钢。通过对耐磨性和韧性的考量, 能够更好地选择钢材料。如其除耐磨性外其他性能都比较优质, 则可以对表面进行改良和处理, 以提高耐磨性。在选择所料模具钢时, 应注意在面对温度变化时的性能变化, 并且加强对加工性能与镜面度的考量。

2.3 热处理的影响

致使模具失效的大部分原因是不科学的热处理。热处理技术不合理与质量不符合标准规定都能够对模具使用周期带来巨大影响。据调查显示, 超过65%以上的模具失效是由热处理方法错误造成的。由此可知, 科学标准地进行热处理对模具的使用寿命至关重要。而如热处理不科学则会为模具使用带来严重后果, 造成极大的危害。一般来说, 热处理共有以下几种表现形式:

(1) 淬火过热。淬火过热会造成晶粒体积变大, 导致其韧度和承受能力减弱, 并且造成模具开裂;

(2) 外表脱碳。通常模具需要经过淬火和高温进行加工, 此时如若没有完善的预防措施, 则会使得其外表出现脱碳现象。一旦脱碳现象长时间未被发现或处理, 则会减弱模具的耐磨性能, 导致使用寿命减少;

(3) 淬火开裂。裂纹在模具被淬火过程中比较常见。而模具的使用寿命则受到裂纹的影响, 严重者会导致早期开裂, 无法保证模具的顺利应用;

(4) 不完全回火。基于各种因素, 模具回火时会出现失误, 发生不完全回火现象。其会使得淬火余力仍旧留存在模具里面, 降低韧度, 出现严重的裂纹, 导致无法正常工作。

3 结论

大多数工艺加工都需要利用模具, 因此其使用寿命至关重要。通过对模具的深入了解, 研究影响使用寿命的因素, 通过对模具的材料选择、结构设计、热处理的研究和分析, 掌握模具选择的规律和方法, 保证科学合理地进行模具材料选择, 并按照生产标准对材料进行热加工, 延长模具的使用寿命, 保证生产的顺利进行, 创造更多的经济和社会效益。

参考文献

[1]关琳.针对模具材料选用、热处理与使用寿命的探究[J].中小企业管理与科技 (下旬刊) , 2014, 11 (12) :145-150.

[2]胥永林.浅谈冷挤压模具制造技术的工艺分析和材料选用[J].塑料制造, 2013, 02 (11) :260-262.

如何提高冷冲压模具使用寿命 篇3

关键词:冷冲压模具 断裂 变形 磨损 啃伤 原因 优化设计 合理设计

中图分类号: TQ153文献标识码:A文章编号:1007-3973 (2010) 02-003-02

冷冲压模具的使用寿命,直接关系着产品加工质量和产品加工效率的高低,是影响产品加工经济成本以及产品加工经济效益的重要因素,同时也是衡量冷冲压模具制造水平高低的重要指标。为了确保企业的产品加工质量,产品的加工效率,降低产品的经济成本,获得最大的经济效益,努力提高冷冲压模具的使用寿命是诸多因素中的重要一环。我们有必要根据具体的实际情况,科学的分析和研究,影响冷冲压模具使用寿命长短的各种因素,从冷冲压模具的结构设计开始,从冷冲压模具材料的合理选材入手,从冷冲压模具加工工艺的制定、装配与调试等多种途径和渠道,采用多方位的科学技术手段,来确保提高冷冲压模具的加工制造质量,延长冷冲压模具的使用寿命。那么,如何为企业多、快、好省的创造出更大的经济效益呢?为此,从以下几个方面进行简略的分析。

1影响冷冲压模具使用寿命的几种形式

影响冷冲压模具使用寿命的形式、原因多种多样,其中最主要的有断裂,变形,磨损,啃伤等等。

1.1断裂

冷冲压模具凸、凹模在使用过程中,突然出现的破损、折断和裂痕等现象。由于模具的凸、凹模是模具在冲压工作中承受冲压力最大的部分,因此模具凸、凹模在冲压过程中,会出现断裂等现象,其主要原因是:热处理加工处置不当(淬火过硬或硬度层太深),设计间隙过小等均会造成模具凸、凹模破损、折断和断裂。模具凸、凹模的断裂,有的是局部的损坏,我们可以通过修复后继续使用,有的则是断裂损坏的程度比较大或是完全损坏不可再修复,只得按图纸设计另行配置新的凸模或凹模后使用。

1.2变形

冷冲压模具凸、凹模在使用过中发生了形状变形,使被加工出的产品零件,几何形状有所改变,进而影响了被加工零件的尺寸精度与形状要求。这与断裂的情形正好相反,主要是由于凸、凹模在热处理过程中淬火硬度不够或淬火硬度层太浅,而使得凸、凹模在受力过程中发生了几何变形。

1.3磨损

冷冲压模具凸、凹模与被加工材料之间相互长时间频繁摩擦,造成的磨损。由于凸、凹模在与被加工材料之间相互长时间摩擦,大批量长时间的冲裁加工零件,冲裁零件毛刺过大(间隙过大),凸、凹间隙过小等,都是造成凸、凹模刀口部分磨损的重要原因。如凸、凹模刀口变钝,棱角变园等等。

1.4啃伤

冷冲压模具凸、凹模间隙调整装配不均匀,凸、凹模相邻边缘相互啃咬,造成凸、凹模刃口啃伤。如模具装配过程中,凸、凹模位置偏移、间隙不均匀,安装不带导向的模具时,凸、凹模间隙调整不合适,而发生的凸、凹模相互啃咬损伤。

2影响冷冲压模具使用寿命的主要原因

影响冷冲压模具使用寿命的原因虽然很多,但最主要的还是受冷冲压模具本身和冲压过程这两大因素影响。

首先是受冷冲压模具自身因素的影响。例如:冷冲压模具的设计结构是否合理,凸、凹模及模具其他结构件选材是否恰当合适,热处理加工过程中,是否达到了淬火的硬度及深度工艺要求,或是超过了淬火的硬度及深工艺度要求,模具各部件的加工精度与质量,模具装配调试过程中凸、凹模的装配间隙调整是否均匀,凸、凹模光洁度的高低等都直接影响模具使用寿命。

其次是受冲压过程因素影响。例如:冲床的选用是否合适(冲床吨位的选用),冲床精度是否达到技术要求,被冲压件所用材料材质的好坏与优劣程度,是否选用合适的润滑剂,冲压工序安排的和理性,模具在冲床上安装的是否正确,冲压操作人员的操作水平等,这些都是左右冷冲压模具使用寿命长短的最直接的主要因素。

3提高冷冲压模具使用寿命的措施与途径

合理的冷冲压模具设计结构、适合的模具选材和高质量的模具加工与装配调试过程,是提高冷冲压模具使用寿命的基础。因此,设计模具时,应全面综合的考虑各种影响模具使用寿命的因素,进而设计制造出最经济实惠且质高耐用的冷冲压模具。

3.1优化冷冲压模具结构设计

合理的冷冲压模具设计结构,是保证模具使用寿命的必备前提。冷冲压模具的使用寿命与合理的结构设计有着很大的关系,设计之初在保证冷冲压模具其他设计要求外,须保证模具的韧性、钢度与强度,以确保冷冲压模具在冲裁过程中模具的凸、凹模及其他结构件不至于因受冲裁力影响而发生的变形、损坏或增加磨损程度。模具设计应尽可能采用带导向的模具设计,同时还应考虑模具设计间隙,设计间隙过小或过大也会增加凸、凹模磨损程度,从而导致模具损坏,使用寿命降低。另外,综合考虑模具的紧固方式和定位方式,加强模具零部件的紧固程度和合理的接触面积,以保证模具整体的制造精度与质量,尤其是带有加强筋、加强板等的设计都会提高模具的整体韧性、刚性和强度。

3.2合理设计冷冲模具凸、凹模间隙

冷冲压模具冲裁间隙的大小,是直接影响被冲压件质量、冷冲模具的使用寿命以及冲压力的大小。模具设计所选用的间隙值应能保证使冲裁力和卸料力最小。成熟的经验,应首选设计手册中的参考数值,同时根据具体情况,在产品质量允许的范围内,将凸、凹模间隙适当放大,这样凸、凹模的磨损程度会大为减轻。而凸、凹模间隙过小时,会使模具摩擦磨损程度加大。因此正确的掌握模具凸、凹模间隙设计,会使模具的使用寿命成倍的增加。

3.3正确的冷冲压模具选材

为提高冷冲压模具的使用寿命,正确的选择模具材料是很重要的。实际中,可根据被冲裁产品的批量大小(件数)来决定模具材料的材质。当批产量大时,选用材料的材质,要选韧性好、强度高、钢性及耐磨性较高的模具材料。当批产量小时,则可选一般的模具材料。亦可根据被冲压材料的材料性质,被冲压件的质量要求,来决定模具的选材。如模具冲压件尺寸公差要求高,模具间隙要求较小,模具的凸、凹模与冲压件摩擦较大时,可选用耐磨性高和有足够韧性材料。同时还应考虑冲裁材料不同的强度和韧性,冲压设备的具体情况等。一般常用模具凸、凹模的材料有CrWMn、CrIZMoV、Cr12、Cr12Mov以及碳素工具钢等。

3.4合理的冷冲压模具热处理工艺

要提高冷冲压模具的使用寿命,对不同材质,不同性能的材料进行合理的热处理工艺处理,是不可缺少的一个关键且重要的环节。淬火过程中,如若加热温度过高,会使凸、凹模淬火过硬造成脆性过大易折断碎裂,淬火硬度过高或淬火层过深,在冷却时还容易变形开裂,或隐形裂纹深藏不易被发现,降低模具的使用寿命。淬火过程中加热温度不够,淬火的硬度或深度达不到工艺技术要求,凸、凹模受力后易变形,降低模具使用寿命。所以在制造冷冲压模具时,必须合理、正确、熟练的掌握热处理工艺技术过程。

3.5冷冲压模具的加工与装配质量

在冷冲压模具加工装配过程中,必须保证模具的加工精度与质量,不同的加工精度与不同的质量,对模具的使用寿命有很大的影响。冷冲压模具加工精度与质量越高其使用寿命就越长,相反就会缩短其使用寿命。一般冷冲压模多选用标准模架,由于是专业化生产的模架,其导向质量不成问题。如是自制模架,装配过程中,要确保导柱、导套精度,导柱、导套滑动自如间隙合理。凸、凹模装配时,间隙调整要求均匀,凸、凹模表面的光洁度要达到设计要求,要保证各零部件的平行度与垂直度,尤其是凸模与固定板,凹模与表面的垂直度要确保在公差允许值的范围以内,各部件连接螺栓、销钉要连接牢固可靠。

3.6冷冲压模具的使用和保养

冷冲压模具在使用时,应正确的选择适宜的、精度较高的冲压设备,以及适合的冲压力,冲压力一般应大于零件重压力的30%-40%。模具在安装时,应严格控制凸模嵌入凹模的深度,以减少磨损程度,嵌入过深,会增加摩擦,固定模具要牢固可靠。为减少磨损,可在被冲压板材(零件)、凸、凹模上涂抹适合的润滑剂,以降低模具的磨损程度和摩擦力。发现凸、凹模刃口不够锋利时,应该及时刃磨凸凹模的刀口,使其锋利。模具不用期间,要做好封存,妥善保护。有弹压装置的模具,要使弹压装置处于自由状态下保存。凸、凹模之间要保持有一定的间隙,以保护凸、凹模刃口不受损坏,表面涂油防锈。模具工作表面要经常保持清洁,以防止杂物或灰尘落在上面。

随着工业的飞速发展,各行业冲压加工对冷冲压模具的加工质量,尤其是冷冲压模具的使用寿命,提出了更高的要求。要提高冷冲压模具的使用寿命,我们就必须要在生产实践活动中,不断的探索、研究、总结、完善优化模具设计结构,最优选择模具用材,提高冷冲压模具的加工工艺技术水平与装配调试技术水平,尤其是在对凸、凹模的设计、选材、加工上要有质的提升与飞跃,如此才能不断提高冷冲压模具的使用寿命。

参考文献:

[1]徐政坤.冲压模具及设备[M].械工业出版社,2005(1).

[2]周本凯.冲压模具使用技巧与修复实例[M].化学工业出版社,2008(10).

[3]模具实用技术丛书编委.模具材料与使用寿命[M].机械工业出版社,2000(4).

模具寿命及材料作业 篇4

一、名词解释

1、模具寿命

2、模具服役

3、模具磨损失效

4、模具断裂失效

5、模具损伤

6、模具失效

二、问答题

1、要使产品的成本v下降为什么要考虑产品批量与模具寿命的匹配关系?

2、为什么平面应变的塑性区小于平面应力状态?那种受力状态容易断裂?为什么?

3、影响模具寿命的基本因素有哪些?其中最主要的因素是什么?为什么该因素是主要因素?

4、试述合金元素在钢中的主要作用。

5、cr12型钢适应制作什么模具?为什么要进行锻造加工?其最终热处理工艺有几种?为什么要进行多次回火? 6、3cr2w8v属何钢种?有什么特性?如制作压铸模、精锻模、其热处理工艺有什么不同?为什么?

7、为什么马氏体时效钢具有优异的强韧结合?某热作模具的服役温度为550。C,?为什么?

8、试分析5CrMnMo;5CrNiMo钢的合金化,热处理工艺特点,为什么具有高韧性和低耐热性,上述两种钢适应制作什么模具?

9、钢结合金和硬质合金有什么共同点与不同点?其主要性能、特点如何?适应制作什么模具?在什么情况下才采用?

10、Bi-Sn 低熔点合金适应制作什么模具?有什么优缺点?

11、模具表面化学热处理强化和表面镀覆强化有什么区别?

12、Zn-Al22合金适应制作什么模具?成型后的热处理起什么作用?

13、简述冲裁模、拉深模、锤锻模的主要失效形式及提高寿命的主要措施?

14、要使我国的模具制造技术赶超国际先进水平,应从那些方面努力?

三、计算题

用探伤手段测得模具内有2.4mm的裂纹(I型)若材料的应力强度K1C为1600N*mm-3/2,求模具能承受的最大应力。如模具在600MPa的应力下工作,裂纹的平均扩展速率为2*10-3 mm/件,求模具剩余寿命。

模具寿命与失效习题(1)2011.3 一、单项 选择题 :在每小题的备 选答案中选出 一个正确 答 案,并将正确答案的 代码填在题于 上的 括号 内。(每题 2 分,本大题 共 30 分)1.气蚀磨损和冲蚀磨损是疲劳磨损的一种派生形式,易在(D)和压铸模中修复出现。(P22)A、冲裁模 B、热锻模 C、挤压模 D、注塑模

2.模具在使用过程中,由于发生塑性变形改变了几何形状或尺寸,而不能通过修复继续服役的现 象称为(B)。(P23)B、塑性变形失效 C、磨损失效 D、断裂失效

A、过量弹性变形失效

3.断口的宏观特征为断口截面尺寸减小,有缩颈现象,这种断裂称为(A)。(P24)A、韧性断裂 B、脆性断裂 C、沿晶断裂 D、穿晶断裂

4.冷拉深模的失形式主要是(C)。(P30)A、磨粒磨损 B、疲劳磨损 C、粘着磨损和磨粒磨损 D、冲蚀磨损

5.金属坏料的流动方向与凸模的运动方向相反的挤压为(B)。(P31)A、正挤压 B、反挤压 C、复合挤压 D、径向挤压

6.断口的宏观分析是用肉眼、(A)或低倍立体显微镜观察和分析断口的形貌。(P40)A、放大镜 B、扫描电子显微镜 C、透射电子显微镜 D、电子探针

7.磨粒磨损的主要特征是摩擦表面上有(B)。(P17)A、金属转移 B、擦伤、划痕 C、麻点、凹坑 D、贝壳状凹坑

8.模具经大量生产使用,因缓慢塑性变形或均匀磨损或疲劳而不能继续服役时,称为模具的(A)。A、正常失效 B、早期失效 C、误用失效 D、磨损失效(P11)

9.按经济法观点,误用失效的责任应由模具(D)承担责任。(P16)A、制造者 B、保管者 C、运输者 D、使用者

10.模具的表面损伤主要包括(C)、接触疲劳、表面腐蚀等。(P16)A、表面氧化 B、表面突起 C、表面磨损 D、表面粗焅

11.发生粘着磨损,致使摩擦副之间不能相对运动的现象称为(D)。(P19)A、涂抹 B、擦伤 C、撕脱 D、咬死

12.在 成 型 过 程 中,材 料两 向 受 压,一 向 受拉,通 过 模 具 的 模 孔 而成 型,获 得 所 需 形 状 尺寸 的型 材、毛坯或零件。这种工艺称为(C)。(P5)A、挤压 B、冲压 C、拉拔 D、压铸

13.在再结晶温度以下使材料发生变形的模具称为(C)。(P5)A、冷作模具 B、热作模具 C、冷变形模具 D、热变形模具

14.工 件 表 面 的 硬突 出 物或 外 来 硬 质 颗 粒 存在 于工 件 与 模 具 接 触 表面 之间,刮 擦 模 具 表 面,引起 模具材料表面脱落的现象称为(A)。(P17)A、磨粒磨损 B、粘着磨损 C、腐蚀磨损 D、氧化磨损

15.一般情况下,塑料注射模的温度变化较急剧,易产生(D)。A、氧化 B、脱碳 C、蠕变 D、热疲劳裂纹

填空题: 每空2 本大题共20 20分 二、填空题:(每空2分,本大题共20分)1.冷变形模具工作时,被加工材料会产生,使塑性变形抗力增大。

2.两接触表面相互运动时,在 循环 应力的作用下,使表层金属疲劳脱落的现象称为疲劳磨损或 麻点磨损。(P21)3.模具与工件之间的表面压力越大,磨粒压入金属表面的深度越深,则磨粒磨损量越 大。(P18)4.模具材料和工件材料硬度相差越,则粘着磨损越小。

5.发生疲劳断裂时,韧性材料断口具有 纤维状 特征,脆性材料断口具有 结晶状 特征。(P27)6.压铸铜合金模具使用寿命远 低于 压铸铝合金。(P36)7.当塑料模具热处理时,由于回火不足,组织中仍有较多的残余奥氏体,在服役温度下残余奥氏 体将转变为,从而产生相变内应力,这也是引起模具开裂的因素。模具失效。(P10)

8.模具受到损坏,不能通过修复而继续服役时称为

9.影响模具寿命的内在因素主要指模具的结构,模具的 材料 和模具的加工工艺。(P10)

40)

三、简答题:(每小题 8 分,本大共 40)简答题: 1.简述疲劳磨损的特点。(P21)答 : 疲劳磨损裂纹一般产生在金属的表面和亚表面内,裂纹扩展的方向平行于表面,或与表 面成10°~30°的角度,只限于在表面层内扩展。疲劳磨损没有一个明显的疲劳极限,寿命波动很大。疲劳磨损除受循环应力作用外,还要经受复杂的摩擦过程,可能会引起 表面层一系列物理化学变化以及各种力学性能与物理性能变化等,所以工作环境比整体 疲劳更复杂更恶劣。

2.简述模具失效分析的意义。(P38)答: 对模具进行失效分析的主要目的是为了避免或减少同类失效现象的重复发生,延长模具 的使用寿命,以利提高经济效益。、、模具失效分析的任务就是判断模具失效的性质,分析模具失效的原因,并提出防止或延迟模具失效的具体措施。

3.简述磨损对塑性变形的促进作用。(P28)答:模具局部磨损后,会带来承载能力的下降以及易受偏载,造成另一部位承受过大的应力而产 生塑性变形。

4.简述锤锻模的基本失效形式。(P33)答: 锤锻横基本失效形式有:

型腔部分的模壁断裂、型腔表面热疲劳、塑性变形、磨损及锤锻模燕尾的开裂.5.简述金相显微镜观测在失效分析中的作用。(P42)答: 金相显微镜是失效分析中常用的手段,如加工工艺(铸造、锻造、焊接、热处理、表面处

理 等)不 当 或 工 艺 路 线 不 当 造 成 的 非 正 常 组 织 或 材 料 缺 陷,都 可 以 通 过 金 相 检 验 鉴 别 出 来。对于腐蚀、氧化、表面加工硬化、裂纹特征,尤其是裂纹扩展方式(穿晶或沿晶),都可从金相检验得到可靠的信息。

四、问答题(10 分)1.计论压力铸造的工作条件及压铸铝合金时模具的失效形式。(P36)答:(1)压力铸造模(简称压铸模)是在压铸机上用来压铸金属铸件的成型模具。压铸模的型

腔表面主要承受液态金属的压力、冲刷、侵蚀和高温作用,每次压铸脱模后,还要对型 腔表面进行冷却、润滑,使模具承受频繁的急热、急冷作用。(2)铝合金制件的压铸模失效形式主要是粘模、侵蚀、热疲劳和磨损。当模具型腔结构 复杂并存在应力集中时,模具也会在热负荷和机械负荷的共同作用下出现断裂失效。

模具寿命与失效习题(2)2011.3 一、单项选择 题 :在每小题 的备选答案中 选出一个 正确答案,并将正确答 案的代码填在 题于上的 括号 内。(每题 2 分,本大题 共 20 分)1.利用扭转实验可以测定材料的(D)。(P61)A、弹性极限σe B、屈服极限σs C、延伸率δ D、切变模量 G

2.材料抵抗弹性变形的能力称为(C)。(P61)A、强度 B、硬度 C、刚度 D、韧度

3.材料产生塑性变形能力的衡量批标是(D)。(P61)A、抗拉强度σb B、屈服强度σs C、断裂韧度 KIc D、延伸率δ

4.洛氏硬度试验的优点是(C),可对工件直接进行检验。(P69)A、压痕大 B、操作麻烦 C、操作简便 D、重复性高

5.试验表明,冲击能量高时,材料的多次冲击抗力主要取决于(D)。(P74)A、强度 B、硬度 C、刚度 D、塑性

6.属于材料工艺性能的是(C)。(P101)A、耐磨性 B、耐热性 C、淬透性 D、冲击韧性

7.在高碳钢中,回火马氏体的断裂韧度低于()。(P)A、下贝氏体 B、上贝氏体 C、渗碳体 D、菜氏体

8.金属材料的弹性模量 E 和切变模量 G 主要受温度和材料(B)的影响。(P45)A、合金化 B、截面形状和尺寸 C、冷变形 D、热变形

9.在高温下,材料保持其组织、性能稳定的能力称为()。(P)A、热稳定性 B、耐热疲劳性 C、高温强度 D、热硬性

10.热处理加热温度过低容易产生的缺点是(B)。(P111)A、硬度过高 B、硬度不足 C、淬火裂纹 D、氧化、脱碳

填空题: 每空2 本大题共20 20分 二、填空题:(每空2分,本大题共20分)1.弹 性模 量 E 表 示材 料受 拉 伸作 用,内 部为 拉应 力 时,产 生 单 位正 应变 所 需正 应力 的 大小。(P44)2.造成疲劳断裂的根本原因是循环应力中的 交变应力。分量 σ а(P53)

3.材料发生塑性变形的根本原因,是由于在外力作用下,模具整体或局部产生的应力值大于材 料 屈服点 的应力值。(P45)4

4.整体式的模具不可避免地存在凹圆角半径,易造成 应力集中,并引起开裂。(P84)5.受载模具的应力状态软性系数 α 值越大,表示应力状态越软,材料发生 韧性 断裂的倾向越大。(P47)6.强度较低,内部又有许多缺陷的灰铸铁,其疲劳缺口敏感度 7.采用可靠的导向装置是保证模具 刚度 的重要措施。(P87)8.在其他条件相同的情况下,冲压设备速度越高,模具寿命越 下降。(P93)9.热处理工艺不当,例如:淬火加热温度过高,或高温停留时间过长,回火温度 偏低 等,都会 使模具零件产生脆性。(P112)10.引起磨 削加 工缺陷 的主 要原 因有: 磨削量 织不匹配,冷却不利。(P108)太大,砂轮 太钝; 砂轮 磨粒 粗细与 工件材料组。

三、名词解释 :(每小题 5 分,本大共 10 分)1.组合式模具(P84)解: 组 合 式模 具 是把 模具 在 应 力集 中 处分 割 为两 部 分 或几 部 分,再 组合 起 来 使用 的 模具。采 用 组 合式 模 具可 避 免应 力 集 中和 裂 纹的 产 生。

2.过热(P110)解:由于加热温度过高、保温时间过长及炉内温度不均匀等,引起模具钢晶粒粗大的现象称为

过热。

四、简答题 :(每小题 8 分,本大题共 40 分)1.简述布氏硬度的优点及应用。(P68)答 : 布氏硬度试验的优点是压痕面积较大,其硬度值能反映材料在较大区域内各组成相的平

均性能。因此,布氏硬度检验最适合测定灰铸铁、轴承合金等材料的硬度。压痕大的另 一优点是试验数据稳定,重复性高。

2.简述马氏体的类型和亚结构对材料断裂韧度的影响。(P96)答:板 条 马 氏 体主 要 是位 错 亚 结构,具 有 较高的 强 度 和塑 性,裂 纹扩展 阻 力 较大,呈 韧 性断

裂,因 而 断裂 韧 度较 高;针 状 马 氏体 主 要是 孪晶 亚 结 构,硬 度 高而 脆性 大,裂 纹扩 展 阻 力 小,呈准 解 理或 解 理断 裂,因而 断 裂韧 度 较低。5

3.简述降低应力磨粒磨损的主要措施。(P57)答 : 在低应力磨粒磨损条件下,材料的磨损量与接触压力成正比,与材料的硬度成反比。这

要求模具钢具有高的硬度和耐磨性,应提高钢中碳和合金元素的含量,并经过适当的热 处理,使其显微组织在高强度的基体上均匀分布有更硬的碳化物或氮化物相。

4.简述模块采用锻造工艺的目的。(P103)答: 模块采用锻造工艺的目的主要是为了改善材料内部缺陷,获得模块所需要的内部组织和

使用性能,并使模块获得一定的形状和尺寸。

5.简述磨削加工质量对模具零件性能的影响。(P108)答:在 磨 削 过 程 中,由于 局 部 摩擦 生 热,容 易引 起 磨 削烧 伤 和磨 削 裂纹 等 缺 陷,并 在 磨削 表面 生 成 残 余 拉应 力,造 成 对零 件 力 学性 能 的影 响,甚 至 成 为导 致 零件 失 效的 原 因。

五、问答题(10 分)1.产生热处理裂纹的原因有哪些?(P110)答:模具预处理组织不良、碳化物偏析严重、冷加工应力过大、淬火操作不当、模具本身形状

复杂薄厚不均等,都可能导致产生淬火裂纹。淬火裂纹将使模具报废,不易发现的裂纹将引起摸具的早期断裂。常见的裂纹有纵向裂纹、横向裂纹和表面裂纹。

模具寿命与失效习题(3)2011.3 填空题: 每空2 本大题共30 30分 一、填空题:(每空2分,本大题共30分)1.激光表面处理的目的是改变工件及化学成分和 显微结构,从而提高工件的表面性能。(P195)2.冷作模具在工件时,一般承受较大的冲击载荷和挤压力,刃口或作表面产生剧烈的摩擦和。

3.高 碳 低 合 金 冷 作 模 具 钢 一 般 采 用 淬 火 + 低 温 回 火 处 理,获 得 回 火 马 氏 体 基 体,弥 散 分 布 少 量。这种组织强度高、韧性好,有一定的耐磨损性能。中,在工 件表 面发 生一 系列 物理 和化 学反 应,取出 冷

4.热浸 镀是 将工 件浸 在熔 触的 液态 金属

却后表面形成所需的金属镀层。(P187)5.火焰线材喷涂法由于熔触微粒所携带的热量不足,致使涂层与工件表面以 机械 结合为主,一 般结合强度 偏低。(P193)6.钴结硬质合金的成分主要由碳化钨、碳化钛为 硬质相,以 金属钴 为粘结相构成。(P163)7.热作模具钢除一般要求好的室温强韧性外,还应具有一系列高温性能,如高温强度、热疲劳抗力、抗氧化性和抗热熔损性能。8.对 塑料 模具钢的性能要求是:热处理工艺简便,热处理变形小或不变形,预硬状态的切削加 工性能好,镜面抛光性能和图案蚀刻性能优良,表面粗糙度低,使用寿命长。(P128)9.在 65Nb 中,铌的作用之一是能生成稳定的 65NbC、并可溶入 MC 和 M2C 碳化物中,增加其稳定 性,使碳化物在淬火加热时溶解缓慢,阻止 晶粒长大,使晶界呈弯曲状。(P134)10.电 镀是 指在 直 流的 作用 下,电 解 液中 的 金 属 离 子 还原 沉积 在 金属 表面 而 形成 一 定性 能的 金 属镀层的过程。(P184)11.模具在渗氮前一般要进行 以获得 组织。、12.电刷镀工艺灵活,操作方便,不受镀件形状、尺寸、材质和位置的限制。(P186)

二、名词解释 :(每小题 5 分,本大共 20 分)1.粉末高速钢 答:

2.电刷镀(P185)答 : 电刷镀是在可导电工件(或模具)表面需要镀覆的部位快速沉积金属镀层的新技术。

3.物理气相沉积(P191)答:物理气相沉积是用物理方法把欲涂覆物质沉积在工件表面上形成膜的过程,通常称为

PVD(Physical Vapour Deposition)法。4.渗碳(P175)答 : 渗 碳 是 把 钢 件 置 于 含 有 活 性 碳 的 介 质 中,加 热 到 850一 950℃,保 温 一 定 时 间,使 碳

原子渗入钢件表面的化学热处理工艺。工件经渗碳后其表面硬度和耐磨性大大提高,同时由于心部和表面的碳含量不同,硬化后的表面获得有利的残余压应力,从而进一步提高渗碳工件的弯曲疲劳强度和 接触疲劳强度。

三、简答题(每小 题 8 分、本大题 40 分)1.简述 GM 钢的特点及应用范围。(P138)答 : GM钢的冷、热加工和电加工性能良好,热处理工艺范围比较宽。GM钢的硬化能力接近高速钢 而 强 韧 性 优 于 高 速 钢 和高 铬 工 具 钢。GM钢 是 制作 精 密、高 效、耐 磨 模具(如 冲 裁、冷 挤、冷 镦、冷剪和高强度蠊栓滚丝轮)的理想材料。

2.简述粉末烧结模具材料。(P129)答 :粉末烧结模具材料是应用粉末冶金的方法制得的。与传统的熔铸法制得的模具钢相比,具

有硬度高、耐磨、耐腐蚀等特点。主要应用于拉丝、冷镦、冷冲、冷挤压等模具,可适应 高强度、高压力负荷、高摩擦、有腐蚀介质及高温工作条件。3.简述镀铬的优点及应用。(P184)答:电镀铬 镀 铬层 有良 好 的 耐蚀 性。根 据镀液 成 分 和工 艺 条件 的 不同,镀铬 层 的硬 度 可在 400

— 1200HV内 变 化。在 低 于 500℃ 下 力 Ⅱ 热,对 镀 铬 层 的 硬 度 无 影 响。镀铬 层 的 摩 擦 系 数 低,尤 其 是 干摩 擦 系数 是 所有 金 属 中最 低 的,因 此有 很 好 的耐 磨 性。① 防 护、装 饰性 镀铬 层 厚 度为 o.5μ m,广 泛 用 于汽 车、白 行 车、钟 表、日 用 五金 等。

②镀硬铬

硬度高,摩擦系数低,耐磨性好,耐蚀性好且镀层光亮,与基体结合力较强,可用作冷作模具和塑料模具的表面防护层,以改善其表面性能。镀层的厚度达0.3-0.5mm,可用于尺寸超差模具的修复。镀硬铬是在模具上应用较多的表面涂镀工艺。③松孔镀 铬 若 采 用松孔镀铬,使 镀层表 面产生许多微细 沟槽和 小孔以便吸附、储存润

滑油,这种镀层具有良好的减摩性和抗粘着能力。例如,在3Cr2W8V钢制压铸模的型腔表 面镀上0.025mm厚的多孔性铬层,可提高使用寿命1倍左右。8

4.如何提高冷作模具材料的耐磨性?(P123)答 : ②耐磨性

耐磨性是冷作模具钢基本性能要求,除影响模具使用寿命外,还影响产品匪 的尺寸精度和表面粗糙度。影响耐磨性的因素很复杂,对于一定条件下工作的冷模具钢而言,为了得到高的磨损抗力,需要在高硬度马氏体基体上弥散均匀分布的细小合金碳化物。因此 含 Cr、W、Mo 和 V 等合金元素的高碳钢,热处理后有高的耐磨损性能。在保持硬度的同时,提 高钢 的强 度和 韧性 对提 高耐 磨性 也是 有益 的。少量 残余 奥氏 体的 存在(<10%)匪 对耐磨

性没有什么影响,甚至是有益的。降低钢中非金属夹杂物含量对耐磨性有利。为了提高模具 的耐磨性,常采用各种表面强化方法。

5.简述激光非晶化及其优点。(P195)答 : 激光非晶化

激光非晶化是利用激光使工件表面熔化及快速冷却的工艺方法,在工件表

面上形成厚度为1-10 μ m 的玻璃态非晶化组织,这种非晶组织具有高强度、高韧性和高的 耐磨性。

四、问答题(10 分)1.试述新型塑料模具钢的种类及用途。(P129)答: 根据化学成分和特殊性能,新型塑料模具钢 可分为:

① 预硬调质型

718钢可视为P20钢的改良型。H13钢是典型热作模具钢。

这类钢广泛用于制造大、中型精密注塑模。② 预硬易切削型 属于此类型钢的有5NiSCa、SMl和8Cr2S等。

这类预硬易切削塑料模具钢适用于大、中型注塑模的制造。③ 时效硬化型 属于此类钢的有25CrM3MoAl、PMS、SM2和06Cr闻6MoVTiAl钢等。

这类钢很适于制作高精度塑料模,还可在软化处理至低硬度后,用作冷挤成型法制造 复杂型腔模具。④冷挤压成型型 属于此类钢的只有LJ和8416两个钢号。

模具寿命 篇5

1 球坯的成形模拟

为了验证上述观点, 对钢球冷镦成形的过程进行了有限元模拟。模拟采3/4钢球的实际生产数据, 分别建立了坯料和同一工艺要求的球形球模具和锥鼓形模具的模型。并进行了网格划分、添加约束、加载等。并据此进行了钢球毛坯冷镦成形过程的有限元模拟。图1是通过模拟所得到的球形球坯, 图2是锥鼓形球坯。锥鼓球坯成形时当原材料金属流向冲模接合面的同时, 就能顺利地充满型腔的锥形状。这是因为一定的锥角将使金属流动时得到的阻力最小, 金属易于向锥形极流动。于是可得到很小的环带或接近于无环带。因此, 提高了生产率。锥鼓形球坯环带小, 两极为小平头, 加工余量比较小, 容易滚动, 因而减少粗加工时间达到精化球坯的目的。

2 模具的载荷

模拟是在相同条件下进行的, 但球形模具和锥鼓形模具相比在Z、Y方向的载荷有所不同。图3中的1和2是模具在Z方向的载荷。图3中的3和4是模具在Y方向的载荷, 表1是具体的载荷值。

从以上数据不难看出锥鼓形球坯的模具Z方向的载荷要比球形球Z方向的载荷要小, 因此锥鼓球的模具在Z方向所受的力要小。钢球毛坯球模具的损坏形式主要是模具极眼处金属的破坏。据此可推测出锥鼓形球坯更节省模具。这和实际生产中的锥鼓形毛坯球的模具的利用率高完全符合。

3 球坯的等效应变图

图4中的1是球形球坯的等高线方式显示等效应变图, 图4中的2是锥鼓形球坯等高线方式显示的等效应变图。等高线方式的等效应变图能更清晰地反映状态变量值分布的情况。

两幅图中45°角和环带边缘部分的为变形最大的地方。但球形球坯环带处的应变比锥鼓形球坯环带处大, 在实际生产中钢料的金属脱碳层往往都堆积在此处, 球坯脱碳就是由此原因造成的。而且球形球坯的环带变形大因此所需的变形力大, 模具的受力同样也大, 损坏的程度也大因此寿命相对就低。

4 球坯的破坯形程度

图5为球形球坯和锥鼓形球坯的破坏。

对比了球形球坯和锥鼓球坯成形时的破坏情况, 同等情况下锥鼓球比球形球的破坏程度要小。

5 模拟结论

从以上的模拟可以看出在同等条件下, 锥鼓形球坯的模具受力小, 因此就提高了模具的使用寿命。且锥鼓形球坯的环带较小提高光磨工序了的加工效率。因此在钢球毛坯的冷镦成形中应尽量采用锥鼓形球坯。

摘要:通过有限元模拟球形球坯和锥鼓形球坯在模具载荷、球坯的等效应变、球坯的破坏程度等因素, 来论证锥鼓形球坯可提高模具有使用寿命。

上一篇:《中华医药》下一篇:世界周刊